Page 210 - IJB-8-4
P. 210

A Review on Bioinks and their Application in Plant Bioprinting
               https://doi.org/10.1021/acsbiomaterials.9b00554     Copper Removal from Contaminated Water. J Manuf Sci Eng,
           115.  Zheng Z, Wu J, Liu M, et al., 2018, 3D Bioprinting of Self-  143:104502.
               standing Silk-based Bioink. Adv Healthc Mater, 7:1701026.     https://doi.org/10.1115/1.4050761
               https://doi.org/10.1002/adhm.201701026          126.  Bajpai  S,  Sharma  S,  2004,  Investigation  of  Swelling/
           116.  Thakare K, Jerpseth L, Qin H, et al., 2020, Bioprinting Using   Degradation Behaviour of Alginate Beads Crosslinked with
               Algae:  Effects  of  Extrusion  Pressure  and  Needle  Diameter   Ca  and Ba  ions. React Funct Polym, 59:129–40.
                                                                     2+
                                                                           2+
               on  Cell  Quantity  in  Printed  Samples.  J  Manuf  Sci  Eng,      https://doi.org/10.1016/j.reactfunctpolym.2004.01.002
               143:014501.                                     127.  Malik  KA,  1995,  A  Convenient  Method  to  Maintain
               https://doi.org/10.1115/1.4048853                   Unicellular Green Algae for Long Times as Standing Liquid
           117.  Russo R, Abbate M, Malinconico M, et al., 2010, Effect of   Cultures. J Microbiol Methods, 22:221–7.
               Polyglycerol and the Crosslinking on the Physical Properties      https://doi.org/10.1016/0167-7012(95)00005-6
               of  a  Blend  Alginate-Hydroxyethylcellulose.  Carbohydr   128.  Reynolds  CS,  2006,  The  Ecology  of  Phytoplankton.
               Polym, 82:1061–7.                                   Cambridge, United Kingdom: Cambridge University Press.
               https://doi.org/10.1016/j.carbpol.2010.06.037   129.  Co  JR,  Culaba  AB,  2019,  3D  Printing:  Challenges  and
           118.  Balasubramanian S, Yu K, Meyer AS, et al., 2021, Bioprinting   Opportunities  of  an  Emerging  Disruptive  Technology.  In:
               of Regenerative Photosynthetic Living Materials. Adv Funct   2019 IEEE 11   International Conference on Humanoid,
                                                                              th
               Mater, 31:2011162.                                  Nanotechnology, Information Technology, Communication and
               https://doi.org/10.1002/adfm.202011162              Control, Environment, and Management (HNICEM), IEEE.
           119.  Kumar V, Vlaskin MS, Grigorenko AV, 2021, 3D Bioprinting   130.  Poomathi N, Singh S, Prakash C, et al., 2020, 3D Printing in
               to Fabricate Living Microalgal Materials. Trends Biotechnol,   Tissue Engineering: A State of the Art Review of Technologies
               39:1243–4.                                          and Biomaterials. Rapid Prototyp J, 26:1313–34.
               https://doi.org/10.1016/j.tibtech.2021.10.006       https://doi.org/10.1108/RPJ-08-2018-0217
           120.  Santmarti A, Zhang H, Lappalainen T, et al., 2020, Cellulose   131.  Stefanova A, In-Na P, Caldwell GS, et al., 2021, Photosynthetic
               Nanocomposites Reinforced with Bacterial Cellulose Sheets   Textile Biocomposites: Using Laboratory Testing and Digital
               Prepared  from  Pristine  and  Disintegrated  Pellicle.  Compos   Fabrication to Develop Flexible Living Building Materials.
               Part A Appl Sci Manuf, 130:105766.                  Sci Eng Compos Mater, 28:223–36.
               https://doi.org/10.1016/j.compositesa.2020.105766     https://doi.org/10.1515/secm-2021-0023
           121.  Rahman  MM,  Netravali  AN,  2016,  Aligned  Bacterial   132.  McHugh DJ, 2003, A Guide to the Seaweed Industry. Vol. 441.
               Cellulose  Arrays  as  “Green”  Nanofibers  for  Composite   United Nations, Rome: Food and Agriculture Organization.
               Materials. ACS Macro Lett, 5:1070–4.            133.  Shahidi F, Synowiecki J, 1991, Isolation and Characterization
               https://doi.org/10.1021/acsmacrolett.6b00621        of  Nutrients  and  Value-added  Products  from  Snow  Crab
           122.  Yu  K,  Balasubramanian  S,  Pahlavani  H,  et  al.,  2020,   (Chionoecetes  opilio)  and  Shrimp  (Pandalus borealis)
               Spiral Honeycomb Microstructured Bacterial  Cellulose   Processing Discards. J Agric Food Chem, 39:1527–32.
               for  Increased  Strength  and  Toughness.  ACS Appl  Mater   134.  Surjushe A,  Vasani  R,  Saple  D,  2008,  Aloe  vera: A  Short
               Interfaces, 12:50748–55.                            Review. Indian J Dermatol, 53:163–6.
               https://doi.org/10.1021/acsami.0c15886              https://doi.org/10.4103/0019-5154.44785
           123.  Wang S, Li T, Chen C, et al., 2018, Transparent, Anisotropic   135.  Calvert  P,  2016,  3D  Printing  of  Gels  with  Living
               Biofilm  with  Aligned  Bacterial  Cellulose  Nanofibers.  Adv   Photosynthetic Algae. MRS Adv, 1:2569–72.
               Funct Mater, 28:1707491.                        136.  Oey ML, Vanstreels E, Baerdemaeker JD, et al., 2007, Effect
               https://doi.org/10.1002/adfm.201707491              of Turgor on Micromechanical and Structural Properties of
           124.  Florea M, Hagemann H, Santosa G, et al., 2016, Engineering   Apple Tissue: A Quantitative Analysis. Postharvest Biology
               Control of Bacterial Cellulose Production Using a Genetic   and Technology, 44:240–7.
               Toolkit  and  a  New  Cellulose-Producing  Strain.  Proc Natl   137.  Nilsson  SB,  Hertz  CH,  Falk  S,  1958,  On  the  Relation
               Acad Sci, 113:E3431–40.                             Between Turgor Pressure and Tissue Rigidit Y. II: Theoretical
               https://doi.org/10.1073/pnas.1522985113             Calculations on Model Systems. Physiol Plant, 11:818–37.
           125.  Thakare K, Jerpseth L, Pei Z, et al., 2021, Three-dimensional   138.  Tyree  M,  Jarvis  P,  1982,  Water  in  tissues  and  cells.  In:
               Printing  of  Hydrogel  Filters  Containing  Algae  Cells  for   Physiological Plant Ecology II. Berlin, Germany: Springer.

           202                         International Journal of Bioprinting (2022)–Volume 8, Issue 4
   205   206   207   208   209   210   211   212   213   214   215