Page 221 - IJB-8-4
P. 221

Dong, et al.
               Mammalian  Cells  Theory  and  Applications.  Bioprinting,   32.  Martel A, Armendáriz IO, García AT, et al., 2017, Evaluation
               23:e00157.                                          of In Vitro Bioactivity of 45S5 Bioactive Glass/Poly Lactic
               https://doi.org/10.1016/j.bprint.2021.e00157        Acid  Scaffolds  Produced  by  3D  Printing.  Int  J Compos
           22.  Melchels  FP,  Feijen  J,  Grijpma  DW,  2010,  A  Review  on   Mater, 7:144–9.
               Stereolithography  and its  Applications  in Biomedical      https://doi.org/10.5923/j.cmaterials.20170705.03
               Engineering. Biomaterials, 31:6121–30.          33.  Aráoz B, Karakaya E, Wusener AG, et al., 2021, 3D Printed
               https://doi.org/10.1016/j.biomaterials.2010.04.050  Poly(Hydroxybutyrate-co-hydroxyvalerate)  45S5  Bioactive
           23.  Tesavibul P, Felzmann R, Gruber S, et al., 2012, Processing   Glass  Composite  Resorbable  Scaffolds  Suitable  for  Bone
               of 45S5 Bioglass® by Lithography-based  Additive    Regeneration. J Mater Res, 36:4000–12.
               Manufacturing. Mater Lett, 74:81–4.                 https://doi.org/10.1557/s43578-021-00272-9
               https://doi.org/10.1016/j.matlet.2012.01.019    34.  Chartrain  NA,  Williams  CB,  Whittington  AR,  2018,
           24.  Li X, Yuan Y, Liu L, et al., 2020, 3D Printing of Hydroxyapatite/  A  Review  on  Fabricating  Tissue  Scaffolds  Using  Vat
               Tricalcium  Phosphate  Scaffold  with  Hierarchical  Porous   Photopolymerization. Acta Biomater, 74:90–111.
               Structure for Bone Regeneration. Biodes Manuf, 3:15–29.     https://doi.org/10.1016/j.actbio.2018.05.010
               https://doi.org/10.1007/s42242-019-00056-5      35.  Goswami  A,  Ankit  K,  Balashanmugam  N,  Umarji  AM,
           25.  Wu X, Xu C, Zhang Z, 2021, Preparation and Optimization   et al.,  2014,  Optimization  of  Rheological  Properties  of
               of Si N   Ceramic  Slurry  for  Low-cost  LCD  Mask   Photopolymerizable  Alumina Suspensions for Ceramic
                   3  4
               Stereolithography. Ceram Int, 47:9400–8.            Microstereolithography. Ceram Int, 40:3655–65.
               https://doi.org/10.1016/j.ceramint.2020.12.072      https://doi.org/10.1016/j.ceramint.2013.09.059
           26.  Irbe  Z,  Loca  D,  2021,  Soluble  Phosphate  Salts  as  Setting   36.  Hinczewski  C,  Corbel  S,  Chartier  T,  1998,  Ceramic
               Aids for Premixed Calcium Phosphate Bone Cement Pastes.   Suspensions  Suitable  for  Stereolithography.  J  Eur Ceram
               Ceram Int, 47:24012–9.                              Soc, 18:583–90.
               https://doi.org/10.1016/j.ceramint.2021.05.110      https://doi.org/10.1016/s0955-2219(97)00186-6
           27.  Carino A, Ludwig C, Cervellino A, et al., 2018, Formation   37.  Eqtesadi S, Motealleh A, Miranda P, et al., 2014, Robocasting
               and  Transformation  of  Calcium  Phosphate  Phases Under   of  45S5  Bioactive  Glass  Scaffolds  for  Bone  Tissue
               Biologically  Relevant  Conditions:  Experiments  and   Engineering. J Eur Ceram Soc, 34:107–18.
               Modelling. Acta Biomater, 74:478–88.                https://doi.org/10.1016/j.jeurceramsoc.2013.08.003
               https://doi.org/10.1016/j.actbio.2018.05.027    38.  Chen  QZ,  Thompson  ID,  Boccaccini  AR,  2006,  45S5
           28.  Oryan A, Alidadi  S,  2018,  Reconstruction  of  Radial  Bone   Bioglass-derived  Glass-ceramic  Scaffolds  for  Bone  Tissue
               Defect  in  Rat  by  Calcium  Silicate  Biomaterials. Life Sci,   Engineering. Biomaterials, 27:2414–25.
               201:45–53.                                          https://doi.org/10.1016/j.biomaterials.2005.11.025
               https://doi.org/10.1016/j.lfs.2018.03.048       39.  Thavornyutikarn  B,  Tesavibul  P,  Sitthiseripratip  K,  et al.,
           29.  Chen L, Deng C, Li J, et al., 2019, 3D Printing of a Lithium-  2017,  Porous  45S5  Bioglass(R)-based  Scaffolds  Using
               Calcium-Silicate Crystal Bioscaffold with Dual Bioactivities   Stereolithography:  Effect  of  Partial  Pre-sintering  on
               for Osteochondral  Interface  Reconstruction,  Biomaterials,   Structural and Mechanical Properties of Scaffolds. Mater Sci
               196:138–50.                                         Eng C Mater Biol Appl, 75:1281–8.
               https://doi.org/10.1016/j.biomaterials.2018.04.005     https://doi.org/10.1016/j.msec.2017.03.001
           30.  Jurczyk  MU,  Jurczyk  K,  Miklaszewski  A,  et al.,  2011,   40.  Boccaccini AR, Chen Q, Lefebvre L, et al., 2007, Sintering,
               Nanostructured Titanium-45S5 Bioglass Scaffold Composites   Crystallisation  and  Biodegradation  Behaviour  of  Bioglass-
               for Medical Applications. Mater Des, 32:4882–9.     derived  Glass-ceramics.  Faraday Discuss,  136:27–44;
               https://doi.org/10.1016/j.matdes.2011.06.005        discussion 107–23.
           31.  Schmitz  SI,  Widholz  B,  Essers  C,  et  al.,  2020,  Superior      https://doi.org/10.1039/b616539g
               Biocompatibility and Comparable Osteoinductive Properties:   41.  Woodard JR, Hilldore AJ, Lan SK, et al., 2007, The Mechanical
               Sodium-reduced   Fluoride-containing   Bioactive   Glass   Properties  and  Osteoconductivity  of  Hydroxyapatite  Bone
               Belonging  to the CaO-MgO-SiO  System as a Promising   Scaffolds with Multi-scale Porosity. Biomaterials, 28:45–54.
                                       2
               Alternative to 45S5 Bioactive Glass. Bioact Mater, 5:55–65.     https://doi.org/10.1016/j.biomaterials.2006.08.021
               https://doi.org/10.1016/j.bioactmat.2019.12.005  42.  Fu  Z,  Zhuang  Y,  Cui  J,  et  al.,  2022,  Development  and

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4       213
   216   217   218   219   220   221   222   223   224   225   226