Page 221 - IJB-8-4
P. 221
Dong, et al.
Mammalian Cells Theory and Applications. Bioprinting, 32. Martel A, Armendáriz IO, García AT, et al., 2017, Evaluation
23:e00157. of In Vitro Bioactivity of 45S5 Bioactive Glass/Poly Lactic
https://doi.org/10.1016/j.bprint.2021.e00157 Acid Scaffolds Produced by 3D Printing. Int J Compos
22. Melchels FP, Feijen J, Grijpma DW, 2010, A Review on Mater, 7:144–9.
Stereolithography and its Applications in Biomedical https://doi.org/10.5923/j.cmaterials.20170705.03
Engineering. Biomaterials, 31:6121–30. 33. Aráoz B, Karakaya E, Wusener AG, et al., 2021, 3D Printed
https://doi.org/10.1016/j.biomaterials.2010.04.050 Poly(Hydroxybutyrate-co-hydroxyvalerate) 45S5 Bioactive
23. Tesavibul P, Felzmann R, Gruber S, et al., 2012, Processing Glass Composite Resorbable Scaffolds Suitable for Bone
of 45S5 Bioglass® by Lithography-based Additive Regeneration. J Mater Res, 36:4000–12.
Manufacturing. Mater Lett, 74:81–4. https://doi.org/10.1557/s43578-021-00272-9
https://doi.org/10.1016/j.matlet.2012.01.019 34. Chartrain NA, Williams CB, Whittington AR, 2018,
24. Li X, Yuan Y, Liu L, et al., 2020, 3D Printing of Hydroxyapatite/ A Review on Fabricating Tissue Scaffolds Using Vat
Tricalcium Phosphate Scaffold with Hierarchical Porous Photopolymerization. Acta Biomater, 74:90–111.
Structure for Bone Regeneration. Biodes Manuf, 3:15–29. https://doi.org/10.1016/j.actbio.2018.05.010
https://doi.org/10.1007/s42242-019-00056-5 35. Goswami A, Ankit K, Balashanmugam N, Umarji AM,
25. Wu X, Xu C, Zhang Z, 2021, Preparation and Optimization et al., 2014, Optimization of Rheological Properties of
of Si N Ceramic Slurry for Low-cost LCD Mask Photopolymerizable Alumina Suspensions for Ceramic
3 4
Stereolithography. Ceram Int, 47:9400–8. Microstereolithography. Ceram Int, 40:3655–65.
https://doi.org/10.1016/j.ceramint.2020.12.072 https://doi.org/10.1016/j.ceramint.2013.09.059
26. Irbe Z, Loca D, 2021, Soluble Phosphate Salts as Setting 36. Hinczewski C, Corbel S, Chartier T, 1998, Ceramic
Aids for Premixed Calcium Phosphate Bone Cement Pastes. Suspensions Suitable for Stereolithography. J Eur Ceram
Ceram Int, 47:24012–9. Soc, 18:583–90.
https://doi.org/10.1016/j.ceramint.2021.05.110 https://doi.org/10.1016/s0955-2219(97)00186-6
27. Carino A, Ludwig C, Cervellino A, et al., 2018, Formation 37. Eqtesadi S, Motealleh A, Miranda P, et al., 2014, Robocasting
and Transformation of Calcium Phosphate Phases Under of 45S5 Bioactive Glass Scaffolds for Bone Tissue
Biologically Relevant Conditions: Experiments and Engineering. J Eur Ceram Soc, 34:107–18.
Modelling. Acta Biomater, 74:478–88. https://doi.org/10.1016/j.jeurceramsoc.2013.08.003
https://doi.org/10.1016/j.actbio.2018.05.027 38. Chen QZ, Thompson ID, Boccaccini AR, 2006, 45S5
28. Oryan A, Alidadi S, 2018, Reconstruction of Radial Bone Bioglass-derived Glass-ceramic Scaffolds for Bone Tissue
Defect in Rat by Calcium Silicate Biomaterials. Life Sci, Engineering. Biomaterials, 27:2414–25.
201:45–53. https://doi.org/10.1016/j.biomaterials.2005.11.025
https://doi.org/10.1016/j.lfs.2018.03.048 39. Thavornyutikarn B, Tesavibul P, Sitthiseripratip K, et al.,
29. Chen L, Deng C, Li J, et al., 2019, 3D Printing of a Lithium- 2017, Porous 45S5 Bioglass(R)-based Scaffolds Using
Calcium-Silicate Crystal Bioscaffold with Dual Bioactivities Stereolithography: Effect of Partial Pre-sintering on
for Osteochondral Interface Reconstruction, Biomaterials, Structural and Mechanical Properties of Scaffolds. Mater Sci
196:138–50. Eng C Mater Biol Appl, 75:1281–8.
https://doi.org/10.1016/j.biomaterials.2018.04.005 https://doi.org/10.1016/j.msec.2017.03.001
30. Jurczyk MU, Jurczyk K, Miklaszewski A, et al., 2011, 40. Boccaccini AR, Chen Q, Lefebvre L, et al., 2007, Sintering,
Nanostructured Titanium-45S5 Bioglass Scaffold Composites Crystallisation and Biodegradation Behaviour of Bioglass-
for Medical Applications. Mater Des, 32:4882–9. derived Glass-ceramics. Faraday Discuss, 136:27–44;
https://doi.org/10.1016/j.matdes.2011.06.005 discussion 107–23.
31. Schmitz SI, Widholz B, Essers C, et al., 2020, Superior https://doi.org/10.1039/b616539g
Biocompatibility and Comparable Osteoinductive Properties: 41. Woodard JR, Hilldore AJ, Lan SK, et al., 2007, The Mechanical
Sodium-reduced Fluoride-containing Bioactive Glass Properties and Osteoconductivity of Hydroxyapatite Bone
Belonging to the CaO-MgO-SiO System as a Promising Scaffolds with Multi-scale Porosity. Biomaterials, 28:45–54.
2
Alternative to 45S5 Bioactive Glass. Bioact Mater, 5:55–65. https://doi.org/10.1016/j.biomaterials.2006.08.021
https://doi.org/10.1016/j.bioactmat.2019.12.005 42. Fu Z, Zhuang Y, Cui J, et al., 2022, Development and
International Journal of Bioprinting (2022)–Volume 8, Issue 4 213

