Page 248 - IJB-8-4
P. 248

3DP PEEK implants for chest wall reconstruction
               J Mech Behav Biomed Mater, 103:103561.              https://doi.org/10.1016/j.msec.2021.112333
               https://doi.org/10.1016/j.jmbbm.2019.103561     49. Zheng  J, Dong E,  Kang  J,  et  al.,  2021,  Effects  of  Raster
           39. Yang C,  Wang B, Li D,  et al., 2017, Modelling  and  Angle and Material Components on Mechanical Properties
               characterisation for the responsive performance of CF/PLA  of  Polyether-Ether-Ketone/Calcium  Silicate  Scaffolds.
               and  CF/PEEK  smart  materials  fabricated  by 4D printing.  Polymers (Basel), 13:2547.
               Virtual Phys Prototyp, 12:69–76.                    https://doi.org/10.3390/polym13152547
               https://doi.org/10.1080/17452759.2016.1265992   50. Smith JA, Ho  VP,  Towe CW, 2018, Using 3-Dimensional
           40. Yang C,  Tian X, Li  D,  et  al.,  2017,  Influence  of  thermal  Modeling to Customize Titanium Plates for Repair of Chest
               processing conditions in 3D printing on the crystallinity and  Wall Trauma. Surg Innov, 25:115–20.
               mechanical  properties  of PEEK material.  J  Mater Process  https://doi.org/10.1177/1553350617753225
               Technol, 248:1–7.                               51.  Cano JR, Escobar FH, Alonso DP, et al., 2018, Reconstruction
               https://doi.org/10.1016/j.jmatprotec.2017.04.027    of the anterior chest wall with a 3-dimensionally printed
           41. Yang C, Tian X, Liu T, et al., 2017, 3D printing for continuous   biodynamic prosthesis. J Thorac Cardiovasc Surg, 155:e59–60.
               fiber  reinforced  thermoplastic  composites:  Mechanism  and  https://doi.org/10.1016/j.jtcvs.2017.08.118
               performance. Rapid Prototyp J, 23:209–15.       52. Goriainov V, Cook R, Latham  JM,  et al., 2014, Bone and
               https://doi.org/10.1108/rpj-08-2015-0098            metal:  An  orthopaedic perspective on osseointegration of
           42. Li D, Yang C, Kang J,  et al., 2018, Precision design and  metals. Acta Biomater, 10:4043–57.
               control-performance  manufacturing research of large-size  https://doi.org/10.1016/j.actbio.2014.06.004
               individualized PEEK implants. J Mech, 54:121–5.  53. Prakash M, Ong Q, Lo C, et al., 2020, Rib Cage Stabilisation
               https://doi.org/10.3901/JME.2018.23.121             with  3D-Printed  Polyethylene  Sternal  Prosthesis Post-
           43. Wang L, Li J, Zhong D, 2019, Chinese expert consensus  Sternotomy Mediastinitis. Heart Lung Circ, 29:1561–5.
               on chest wall tumor resection and chest wall reconstruction  https://doi.org/10.1016/j.hlc.2020.01.005
               (version 2018). Chin J Clin Thorac Cardiovasc Surg, 26:1–7.  54. Mohamed OA, Masood SH, Bhowmik JL, 2015, Optimization
               https://doi.org/10.7507/1007-4848.201809058         of fused deposition modeling process parameters: A review of
           44. Wang L, Yan X, Zhao J, et al., 2021, Expert consensus on  current research and future prospects. Adv Manuf, 3:42–53.
               resection of chest wall tumors and chest wall reconstruction.  https://doi.org/10.1007/s40436-014-0097-7
               Transl Lung Cancer Res, 10:4057–83.             55. Wickramasinghe S, Do  T,  Tran P, 2020, FDM-based  3D
               https://doi.org/10.21037/tlcr-21-935                printing of polymer and associated composite: A review on
           45. Su Y, He J, Jiang N, et al., 2020, Additively-manufactured  mechanical  properties,  defects  and  treatments.  Polymers
               poly-ether-ether-ketone (PEEK) lattice scaffolds with uniform  (Basel), 12:1529.
               microporous architectures for enhanced cellular response and  https://doi.org/10.3390/polym12071529
               soft tissue adhesion. Mater Des, 191:108671.    56.  Turner BN, Gold SA, 2015, A review of melt extrusion additive
               https://doi.org/10.1016/j.matdes.2020.108671        manufacturing processes: II. Materials, dimensional accuracy,
           46. Liu X, Huang L, Zhang H, et al., 2021, Facile Amidogen Bio‐  and surface roughness. Rapid Prototyp J, 21:250–61.
               Activation Method Can Boost the Soft Tissue Integration on  https://doi.org/10.1108/rpj-02-2013-0017
               3D Printed Poly–Ether–Ether–Ketone Interface. Adv Mater  57. Li Z, Kindig MW, Kerrigan JR, et al., 2010, Rib fractures
               Interfaces, 8 :2100547.                             under anterior-posterior dynamic  loads: Experimental  and
               https://doi.org/10.1002/admi.202100547              finite-element study. J Biomech, 43:228–34.
           47. Zheng J, Kang J,  Sun C,  et al.,  2021,  Effects  of  printing  https://doi.org/10.1016/j.jbiomech.2009.08.040
               path and material  components  on mechanical  properties  58. Li Z, Kindig MW, Subit D, et al., 2010, Influence of mesh
               of   3D-printed  polyether-ether-ketone/hydroxyapatite  density, cortical thickness and material properties on human
               composites. J Mech Behav Biomed Mater, 118:104475.  rib fracture prediction. Med Eng Phys, 32:998–1008.
               https://doi.org/10.1016/j.jmbbm.2021.104475         https://doi.org/10.1016/j.medengphy.2010.06.015
           48. Zheng J, Zhao H, Dong E, et al., 2021, Additively-manufactured   59. Griffin MF, O’Toole G, Sabbagh W, et al., 2020, Comparison
               PEEK/HA  porous  scaffolds  with  highly-controllable  of the compressive mechanical  properties  of auricular  and
               mechanical properties and excellent biocompatibility. Mater  costal cartilage  from patients  with microtia.  J  Biomech,
               Sci Eng C Mater Biol Appl, 128:112333.              103:109688.

           240                         International Journal of Bioprinting (2022)–Volume 8, Issue 4
   243   244   245   246   247   248   249   250   251   252   253