Page 249 - IJB-8-4
P. 249

Wang, et al.
               https://doi.org/10.1016/j.jbiomech.2020.109688  69. Wang R, Cheng  KJ,  Advincula  RC,  et  al., 2019, On the
           60. Guo BY, Liao DH, Li XY, et al., 2007, Age and gender related   thermal processing and mechanical properties of 3D-printed
               changes in biomechanical properties of healthy human costal  polyether ether ketone. MRS Commun, 9:1046–52.
               cartilage. Clin Biomech (Bristol, Avon), 22:292–7.  https://doi.org/10.1557/mrc.2019.86
               https://doi.org/10.1016/j.clinbiomech.2006.10.004  70. Wu W, Geng P, Li G, et al., 2015, Influence of Layer Thickness
           61. Melchels FP, Domingos MA, Klein TJ, et al., 2012, Additive   and Raster Angle on the Mechanical Properties of 3D-Printed
               manufacturing  of tissues and organs.  Prog Polym Sci,  PEEK and a Comparative Mechanical Study between PEEK
               37:1079–104.                                        and ABS. Materials, 8:5834–46.
               https://doi.org/10.1016/j.progpolymsci.2011.11.007  https://doi.org/10.3390/ma8095271
           62. Gross BC, Erkal JL, Lockwood SY, et al., 2014, Evaluation  71. Deng X, Zeng Z, Peng B, et al., 2018, Mechanical properties
               of 3D printing and its potential impact on biotechnology and  optimization of poly-ether-ether-ketone via fused deposition
               the chemical sciences. Anal Chem, 86:3240–53.       modeling. Materials, 11:20216.
               https://doi.org/10.1021/ac403397r                   https://doi.org/10.3390/ma11020216
           63. Rengier  F,  Mehndiratta  A, von  Tengg-Kobligk  H,  et  al.,  72. Sandri A, Donati G, Blanc CD,  et al.,  2020, Anterior
               2010, 3D printing based on imaging data: Review of medical  chest wall resection and sternal body wedge for primary
               applications. Int J Comput Assist Radiol Surg, 5:335–41.  chest wall tumour: Reconstruction technique with
               https://doi.org/10.1007/s11548-010-0476-x           biological meshes and titanium plates.  J  Thorac Dis,
           64. Leukers B, Gülkan H, Irsen SH, et al., 2005, Hydroxyapatite  12:17–21.
               scaffolds for bone tissue engineering made by 3D printing.  https://doi.org/10.21037/jtd.2019.06.45
               J Mater Sci Mater Med, 16:1121–4.               73. Lardinois D, Müller M, Furrer M, et al., 2000, Functional
               https://doi.org/10.1007/s10856-005-4716-5           assessment of chest wall integrity after methylmethacrylate
           65. Deng L, Deng Y, Xie K, 2017, AgNPs-decorated 3D printed  reconstruction. Ann Thorac Surg, 69:919–23.
               PEEK implant for infection control and bone repair. Colloids  https://doi.org/10.1016/S0003-4975(99)01422-8
               Surf B Biointerfaces, 160:483–92.               74. Nishida  Y,  Tsukushi S, Urakawa H,  et al., 2015, Post-
               https://doi.org/10.1016/j.colsurfb.2017.09.061      operative  pulmonary and shoulder function after sternal
           66. El Magri  A, El Mabrouk K,  Vaudreuil  S,  et al., 2020,  reconstruction  for patients  with  chest  wall  sarcomas.  Int  J
               Optimization  of printing  parameters for improvement  Clin Oncol, 20:1218–25.
               of mechanical  and thermal  performances of 3D printed  https://doi.org/10.1007/s10147-015-0844-1
               poly(ether ether ketone) parts. J Appl Polym Sci, 137:49087.   75. Daigeler  A, Druecke D, Hakimi M,  et al., 2009,
               https://doi.org/10.1002/app.49087                   Reconstruction of the thoracic wall-long-term follow-up
           67. Berman B, 2012, 3-D printing: The new industrial revolution.   including pulmonary function tests. Langenbecks Arch Surg,
               Bus Horiz, 55:155–62.                               394:705–15.
               https://doi.org/10.1016/j.bushor.2011.11.003        https://doi.org/10.1007/s00423-008-0400-9
           68. Hu B, Duan X, Xing Z, et al., 2019, Improved design of fused   76. Leuzzi G, Nachira  D, Cesario A,  et al., 2015, Chest wall
               deposition  modeling  equipment  for 3D printing  of high-  tumors and prosthetic reconstruction: A comparative analysis
               performance PEEK parts. Mech Mater, 137:3139.       on functional outcome. Thorac Cancer, 6:247–54.
               https://doi.org/10.1016/j.mechmat.2019.103139       https://doi.org/10.1111/1759-7714.12172










                                                               Publisher’s note
                                                               Whioce  Publishing remains neutral  with regard to
                                                               jurisdictional claims in published maps and institutional
                                                               affiliations.

                                       International Journal of Bioprinting (2022)–Volume 8, Issue 4       241
   244   245   246   247   248   249   250   251   252   253   254