Page 52 - IJB-8-4
P. 52

A strong bio-ink for Meniscus Regeneration
               Am, 56:719–29.                                      inflammatory  Scaffold  for  Accelerating  Skin  Repair  in
           8.   Noble J, Erat  K, 1980, In Defence of the Meniscus.   Diabetic Mice. Mar Drugs, 19:496.
               A Prospective Study of 200 Meniscectomy Patients. J Bone      https://doi.org/3390/md19090496
               Joint Surg Br, 62:7–11.                         19.  Thankam FG, Diaz C, Chandra I, et al., 2021, Hybrid
               https://doi.org/1302/0301-620x.62b1.7351438         Interpenetrating  Hydrogel  Network  Favoring  the
           9.   Roos  H, Laurén M,  Adalberth  T, et al., 1998, Knee   Bidirectional  Migration  of  Tenocytes  for  Rotator  Cuff
               Osteoarthritis  after  Meniscectomy:  Prevalence  of  Tendon Regeneration. J Biomed Mater Res B Appl Biomater,
               Radiographic  Changes after  Twenty-one  Years, Compared   110:467–77.
               with Matched Controls. Arthritis Rheum, 41:687–93.     https://doi.org/1002/jbm.b.34924
               https://doi.org/1002/1529-0131(199804)41:4<687:Aid-  20.  Rajagopal K, Dutt V, Balakumar B, et al., 2021, Long-Term
               art16>3.0.Co;2-2                                    Evaluation of Allogenic Chondrocyte-Loaded PVA-PCL IPN
           10.  Wang X, Ding Y, Li H, et al., 2021, Advances in Electrospun   Scaffolds for Articular Cartilage Repair in Rabbits. Indian J
               Scaffolds for Meniscus Tissue Engineering and Regeneration.   Orthop, 55:853–60.
               J Biomed Mater Res B Appl Biomater, 110:923–49.     https://doi.org/1007/s43465-020-00290-5
               https://doi.org/1002/jbm.b.34952                21.  Parameswaran-Thankam A, Al-Anbaky Q, Al-Karakooly Z, et al.,
           11.  Azhim  A, Ono  T, Fukui  Y, et al., 2013, Preparation  of   2018, Fabrication and characterization of hydroxypropyl guar-
               Decellularized  Meniscal  Scaffolds  Using  Sonication   poly (vinyl alcohol)-nano hydroxyapatite composite hydrogels
               Treatment for Tissue Engineering. Annu Int Conf IEEE Eng   for bone tissue engineering.  J  Biomater Sci Polym Ed,
               Med Biol Soc, 2013:6953–6.                          29:2083–105.
               https://doi.org/1109/embc.2013.6611157              https://doi.org/1080/09205063.2018.1494437
           12.  Sandmann GH, Eichhorn S, Vogt S, et al., 2009, Generation   22.  Sung J, Lee DG, Lee S, et al., 2020, Crosslinking Dynamics
               and Characterization of a Human Acellular Meniscus Scaffold   and Gelation  Characteristics  of Photo-  and  Thermally
               for Tissue Engineering. J Biomed Mater Res A, 91:567–74.  Polymerized  Poly(Ethylene  Glycol)  Hydrogels.  Materials
               https://doi.org/1002/jbm.a.32269                    (Basel), 13:3277.
           13.  Shimomura  K,  Rothrauff  BB,  Tuan  RS,  2017,  Region-     https://doi.org/3390/ma13153277
               specific Effect of the Decellularized Meniscus Extracellular   23.  Peppas NA, Keys KB,  Torres-Lugo M, et al., 1999,
               Matrix on Mesenchymal Stem Cell-based Meniscus Tissue   Poly(ethylene glycol)-containing hydrogels in drug delivery.
               Engineering. Am J Sports Med, 45:604–11.            J Control Release, 62:81–7.
               https://doi.org/1177/0363546516674184               https://doi.org/1016/s0168-3659(99)00027-9
           14.  Yang  Y, Cheng  Y, Peng S, et al., 2021, Microstructure   24.  Rehman SR, Augustine R, Zahid AA, et al., 2019, Reduced
               Evolution and Texture Tailoring of Reduced Graphene Oxide   Graphene  Oxide  Incorporated  GelMA  Hydrogel  Promotes
               Reinforced Zn Scaffold. Bioact Mater, 6:1230–41.    Angiogenesis for  Wound Healing  Applications.  Int J
               https://doi.org/1016/j.bioactmat.2020.10.017        Nanomed, 14:9603–17.
           15.  Yang Y,  Cheng Y, Yang  M, et al., 2022, Semicoherent      https://doi.org/2147/ijn.S218120
               Strengthens  Graphene/Zinc  Scaffolds.  Mater  Today Nano,   25.  Sigen A, Zeng M, Johnson M, et al., 2020, Green Synthetic
               17:100163.                                          Approach  for  Photo-Cross-Linkable  Methacryloyl
               https://doi.org/10.1016/j.mtnano.2021.100163        Hyaluronic  Acid  with  a  Tailored  Substitution  Degree.
           16.  Wu J, Ding Q, Dutta  A, et  al., 2015,  An Injectable   Biomacromolecules, 21:2229–35.
               Extracellular Matrix Derived Hydrogel for Meniscus Repair      https://doi.org/1021/acs.biomac.0c00196
               and Regeneration. Acta Biomater, 16: 49-59.     26.  van den Borne MP, Raijmakers NJ, Vanlauwe J, et al., 2007,
               https://doi.org/1016/j.actbio.2015.01.027           International Cartilage Repair Society (ICRS) and Oswestry
           17.  Darabi MA, Khosrozadeh  A,  Wang  Y, et al.,  2020, An   Macroscopic  Cartilage  Evaluation  Scores  Validated  for
               Alkaline Based Method for Generating Crystalline, Strong,   Use in  Autologous Chondrocyte Implantation  (ACI) and
               and Shape Memory Polyvinyl Alcohol Biomaterials. Adv Sci   Microfracture. Osteoarthritis Cartilage, 15:1397–402.
               (Weinh), 7:1902740.                                 https://doi.org/1016/j.joca.2007.05.005
               https://doi.org/1002/advs.201902740             27.  O’Driscoll  SW,  Keeley  FW,  Salter  RB,  1988,  Durability
           18.  Huang X, Guan N,  Li Q,  2021,  A Marine-Derived  Anti-  of Regenerated  Articular  Cartilage  Produced  by Free

           44                          International Journal of Bioprinting (2022)–Volume 8, Issue 4
   47   48   49   50   51   52   53   54   55   56   57