Page 188 - IJB-9-1
P. 188

International Journal of Bioprinting                                     PEEK skull implant in cranioplasty



            19.  Kurtz SM, Devine JN, 2007, PEEK biomaterials in trauma,   phase separation for high temperature selective laser sintering.
               orthopedic, and spinal implants.  Biomaterials, 28(32):   Mater Design, 201: 1095101.
               4845–4869.
                                                                  https://doi.org/10.1016/j.matdes.2021.109510
               https://doi.org/10.1016/j.biomaterials.2007.07.013
                                                               25.  Feng P, Wu Ping, Gao C, et al., 2018, A multimaterial scaffold
            20.  Scolozzi P, Martinez A, Jaques B, 2007, Complex orbito-  with tunable properties: Toward bone tissue repair. Adv Sci
               fronto-temporal reconstruction using computer-designed   (Weinh), 5(6): 1700817.
               PEEK implant. J Craniofac Surg, 18(1): 224–228.
                                                                  https://doi.org/10.1002/advs.201700817
               https://doi.org/10.1097/01.scs.0000249359.56417.7e
                                                               26.  Yang  C,  Tian  X,  Li  D,  et al.,  2017,  Influence  of  thermal
            21.  Punchak M, Chung L, Lagman C, et al., 2017,  Outcomes   processing conditions  in 3D printing  on the crystallinity
               following polyetheretherketone (PEEK) cranioplasty:   and mechanical properties of PEEK material. J Mater Process
               Systematic review and meta-analysis.  J Clin Neurosci, 41:   Technol, 248: 1–7.
               30–35.
                                                               27.  Zhao F, Li D, Jin Z, 2018, Preliminary investigation of poly-
               https://doi.org/10.1016/j.jocn.2017.03.028         ether-ether-ketone based on fused deposition modeling for
                                                                  medical applications. Materials (Basel), 11(2): 288.
            22.  Sun C, Kang J, Yang C, et al., 2021, Additive manufactured
               polyether-ether-ketone  implants  for  orthopaedic  https://doi.org/10.3390/ma11020288
               applications: A narrative review.  Biomater Transl. 3(2):    28.  Haleem A, Javaid M, 2019, Polyether ether ketone (PEEK)
               116–133.
                                                                  and its 3D printed implants applications in medical field: An
               https://doi.org/10.12336/biomatertransl.2021.01.000  overview. Clin Epidemiol Global Health, 7(4): 571–577.
            23.  Watson J, Hatamleh M, Alwahadni A, et al., 2014,  Correction   https://doi.org/10.1016/j.cegh.2019.01.003
               of facial and mandibular asymmetry using a computer   29.  Sharma N,  Aghlmandi S,  Dalcanale  F,  et al., 2021,
               aided design/computer aided manufacturing prefabricated   Quantitative assessment of point-of-care 3D-printed
               titanium implant. J Craniofac Surg, 25(3): 1099–1101.
                                                                  patient-specific polyetheretherketone (PEEK) cranial
               https://doi.org/10.1097/SCS.0000000000000659       implants. Int J Mol Sci, 22(16): 8521.
            24.  Wang Y, Shen J, Yan M, et al., 2021, Poly ether ether ketone   https://doi.org/10.3390/ijms22168521
               and its composite powder prepared by thermally induced








































            V
            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)  180                      https://doi.org/10.18063/ijb.v9i1.634
   183   184   185   186   187   188   189   190   191   192   193