Page 236 - IJB-9-1
P. 236

International Journal of Bioprinting                         Cellulose-based bio-inks for bone and cartilage TE



            72.  Rahman MS, Hasan MS, Nitai AS, et  al., 2021, Recent   83.  Duhoranimana E, Karangwa E, Lai L, et al., 2017, Effect of
               developments of carboxymethyl cellulose. Polymers, 13: 1345.   sodium carboxymethyl cellulose on complex coacervates
               https://doi.org/10.3390/polym13081345              formation with gelatin: Coacervates characterization,
                                                                  stabilization and formation mechanism. Food Hydrocoll, 69:
            73.  Zennifer A, Senthilvelan P, Sethuraman S, et al., 2021, Key   111–120.
               advances of carboxymethyl cellulose in tissue engineering &
               3D bioprinting applications. Carbohydr Poly, 256: 117561.   https://doi.org/10.1016/j.foodhyd.2017.01.035
               https://doi.org/10.1016/j.carbpol.2020.117561   84.  Kobayashi H, Fujishiro T, Belkoff SM, et  al., 2009, Long-
                                                                  term evaluation of a calcium phosphate bone cement
            74.  Rachtanapun P, Jantrawut P, Klunklin W, et  al., 2021,   with carboxymethyl cellulose in a vertebral defect model.
               Carboxymethyl bacterial cellulose from nata de coco: effects   J Biomedmater Res A, 88: 880–888.
               of NaOH. Polymers, 13: 348.
                                                                  https://doi.org/10.1002/jbm.a.31933
               https://doi.org/10.3390/polym13030348
                                                               85.  Montelongo SA, Chiou G, Ong JL, et al., 2021, Development
            75.  Gaihre B, Jayasuriya AC, 2016, Fabrication and   of bioinks for 3D printing microporous, sintered calcium
               characterization  of  carboxymethyl  cellulose  novel  phosphate scaffolds. J Mater Sci Mater Med, 32: 94.
               microparticles for bone tissue engineering. Mater Sci Eng C
               Mater Biol Appl, 69: 733–743.                      https://doi.org/10.1007/s10856-021-06569-9
               https://doi.org/10.1016/j.msec.2016.07.060      86.  Mohan T, Dobaj Štiglic A, Beaumont M, et al., 2020, Generic
                                                                  method for designing self-standing and dual porous 3d
            76.  Mallakpour  S,  Tukhani  M,  Hussain  CM,  2021,  Recent   bioscaffolds from cellulosic nanomaterials for tissue
               advancements  in  3D  bioprinting  technology  of  engineering applications. ACS Appl Bio Mater, 3: 1197–1209.
               carboxymethyl cellulose-based hydrogels: Utilization in
               tissue engineering. Adv Colloid Interface Sci, 292: 102415.   https://doi.org/10.1021/acsabm.9b01099
               https://doi.org/10.1016/j.cis.2021.102415       87.  Al-Tabakha MM, 2010, HPMC capsules: current status and
                                                                  future prospects. JPPS, 13: 428–442.
            77.  Singh BN, Panda NN, Mund R, et al., 2016, Carboxymethyl
               cellulose enables silk fibroin nanofibrous scaffold with   https://doi.org/10.18433/j3k881
               enhanced biomimetic potential for bone tissue engineering   88.  Koehl NJ, Shah S, Tenekam ID, et  al., 2021, Lipid based
               application. Carbohydr Poly, 151: 335–347.
                                                                  formulations in hard gelatin and hpmc capsules: a physical
               https://doi.org/10.1016/j.carbpol.2016.05.088      compatibility study. Pharm Res, 38: 1439–1454.
            78.  Chen S, Shi Y, Zhang X, et al., 2019, 3D printed hydroxyapatite   https://doi.org/10.1007/s11095-021-03088-8
               composite scaffolds with enhanced mechanical properties.
               Ceram Int, 45: 10991–10996.                     89.  Götz LM, Holeczek K, Groll J, et al., 2021, Extrusion-based
                                                                  3D printing of calcium magnesium phosphate cement pastes
               https://doi.org/10.1016/j.ceramint.2019.02.182     for degradable bone implants. Materials (Basel, Switzerland),
            79.  Jiang H, Zuo Y, Zou Q, et  al., 2013, Biomimetic spiral-  14: 5197.
               cylindrical scaffold based on hybrid chitosan/cellulose/  https://doi.org/10.3390/ma14185197
               nano-hydroxyapatite membrane for bone regeneration. ACS
               App Mater Interfaces, 5: 12036–12044.           90.  Ni T, Liu M, Zhang Y, et al., 2020, 3D Bioprinting of bone
                                                                  marrow mesenchymal stem cell-laden silk fibroin double
               https://doi.org/10.1021/am4038432                  network scaffolds for cartilage tissue repair. Bioconjug Chem,
            80.  Resmi R, Parvathy J, John A,  et  al., 2020, Injectable self-  31: 1938–1947.
               crosslinking hydrogels for meniscal repair: A study with   https://doi.org/10.1021/acs.bioconjchem.0c00298
               oxidized alginate and gelatin. Carbohydr Poly, 234: 115902.
                                                               91.  Luo K, Yang Y, Shao Z, 2016, Physically crosslinked
               https://doi.org/10.1016/j.carbpol.2020.115902      biocompatible silk-fibroin-based hydrogels with high
            81.  Janarthanan G, Tran HN, Cha E, et al., 2020,3D printable   mechanical performance. Adv Funct Mater, 26: 872–880.
               and injectable lactoferrin-loaded carboxymethyl cellulose-  https://doi.org/10.1002/adfm.201503450
               glycol chitosan hydrogels for tissue engineering applications.
               Mat Sci Eng, 113: 111008.                       92.  Gong JP, 2010, Why are double network hydrogels so tough?
                                                                  Soft Matter, 6: 2583–2590.
               https://doi.org/10.1016/j.msec.2020.111008
                                                                  https://doi.org/10.1039/b924290b
            82.  P BS, S G, J P, et  al., 2022, Tricomposite gelatin-
               carboxymethylcellulose-alginate bioink for  direct  and   93.  Maestro A, González C, Gutiérrez JM, 2002, Shear thinning
               indirect 3D printing of human knee meniscal scaffold.   and thixotropy of HMHEC and HEC water solutions.
               Intbiol Macromol, 195: 179–189.                    J Rheol, 46: 1445–1457.
               https://doi.org/10.1016/j.ijbiomac.2021.11.184     https://doi.org/10.1122/1.1516789


            V                                              228                      https://doi.org/10.18063/ijb.v9i1.637
            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)
   231   232   233   234   235   236   237   238   239   240   241