Page 236 - IJB-9-1
P. 236
International Journal of Bioprinting Cellulose-based bio-inks for bone and cartilage TE
72. Rahman MS, Hasan MS, Nitai AS, et al., 2021, Recent 83. Duhoranimana E, Karangwa E, Lai L, et al., 2017, Effect of
developments of carboxymethyl cellulose. Polymers, 13: 1345. sodium carboxymethyl cellulose on complex coacervates
https://doi.org/10.3390/polym13081345 formation with gelatin: Coacervates characterization,
stabilization and formation mechanism. Food Hydrocoll, 69:
73. Zennifer A, Senthilvelan P, Sethuraman S, et al., 2021, Key 111–120.
advances of carboxymethyl cellulose in tissue engineering &
3D bioprinting applications. Carbohydr Poly, 256: 117561. https://doi.org/10.1016/j.foodhyd.2017.01.035
https://doi.org/10.1016/j.carbpol.2020.117561 84. Kobayashi H, Fujishiro T, Belkoff SM, et al., 2009, Long-
term evaluation of a calcium phosphate bone cement
74. Rachtanapun P, Jantrawut P, Klunklin W, et al., 2021, with carboxymethyl cellulose in a vertebral defect model.
Carboxymethyl bacterial cellulose from nata de coco: effects J Biomedmater Res A, 88: 880–888.
of NaOH. Polymers, 13: 348.
https://doi.org/10.1002/jbm.a.31933
https://doi.org/10.3390/polym13030348
85. Montelongo SA, Chiou G, Ong JL, et al., 2021, Development
75. Gaihre B, Jayasuriya AC, 2016, Fabrication and of bioinks for 3D printing microporous, sintered calcium
characterization of carboxymethyl cellulose novel phosphate scaffolds. J Mater Sci Mater Med, 32: 94.
microparticles for bone tissue engineering. Mater Sci Eng C
Mater Biol Appl, 69: 733–743. https://doi.org/10.1007/s10856-021-06569-9
https://doi.org/10.1016/j.msec.2016.07.060 86. Mohan T, Dobaj Štiglic A, Beaumont M, et al., 2020, Generic
method for designing self-standing and dual porous 3d
76. Mallakpour S, Tukhani M, Hussain CM, 2021, Recent bioscaffolds from cellulosic nanomaterials for tissue
advancements in 3D bioprinting technology of engineering applications. ACS Appl Bio Mater, 3: 1197–1209.
carboxymethyl cellulose-based hydrogels: Utilization in
tissue engineering. Adv Colloid Interface Sci, 292: 102415. https://doi.org/10.1021/acsabm.9b01099
https://doi.org/10.1016/j.cis.2021.102415 87. Al-Tabakha MM, 2010, HPMC capsules: current status and
future prospects. JPPS, 13: 428–442.
77. Singh BN, Panda NN, Mund R, et al., 2016, Carboxymethyl
cellulose enables silk fibroin nanofibrous scaffold with https://doi.org/10.18433/j3k881
enhanced biomimetic potential for bone tissue engineering 88. Koehl NJ, Shah S, Tenekam ID, et al., 2021, Lipid based
application. Carbohydr Poly, 151: 335–347.
formulations in hard gelatin and hpmc capsules: a physical
https://doi.org/10.1016/j.carbpol.2016.05.088 compatibility study. Pharm Res, 38: 1439–1454.
78. Chen S, Shi Y, Zhang X, et al., 2019, 3D printed hydroxyapatite https://doi.org/10.1007/s11095-021-03088-8
composite scaffolds with enhanced mechanical properties.
Ceram Int, 45: 10991–10996. 89. Götz LM, Holeczek K, Groll J, et al., 2021, Extrusion-based
3D printing of calcium magnesium phosphate cement pastes
https://doi.org/10.1016/j.ceramint.2019.02.182 for degradable bone implants. Materials (Basel, Switzerland),
79. Jiang H, Zuo Y, Zou Q, et al., 2013, Biomimetic spiral- 14: 5197.
cylindrical scaffold based on hybrid chitosan/cellulose/ https://doi.org/10.3390/ma14185197
nano-hydroxyapatite membrane for bone regeneration. ACS
App Mater Interfaces, 5: 12036–12044. 90. Ni T, Liu M, Zhang Y, et al., 2020, 3D Bioprinting of bone
marrow mesenchymal stem cell-laden silk fibroin double
https://doi.org/10.1021/am4038432 network scaffolds for cartilage tissue repair. Bioconjug Chem,
80. Resmi R, Parvathy J, John A, et al., 2020, Injectable self- 31: 1938–1947.
crosslinking hydrogels for meniscal repair: A study with https://doi.org/10.1021/acs.bioconjchem.0c00298
oxidized alginate and gelatin. Carbohydr Poly, 234: 115902.
91. Luo K, Yang Y, Shao Z, 2016, Physically crosslinked
https://doi.org/10.1016/j.carbpol.2020.115902 biocompatible silk-fibroin-based hydrogels with high
81. Janarthanan G, Tran HN, Cha E, et al., 2020,3D printable mechanical performance. Adv Funct Mater, 26: 872–880.
and injectable lactoferrin-loaded carboxymethyl cellulose- https://doi.org/10.1002/adfm.201503450
glycol chitosan hydrogels for tissue engineering applications.
Mat Sci Eng, 113: 111008. 92. Gong JP, 2010, Why are double network hydrogels so tough?
Soft Matter, 6: 2583–2590.
https://doi.org/10.1016/j.msec.2020.111008
https://doi.org/10.1039/b924290b
82. P BS, S G, J P, et al., 2022, Tricomposite gelatin-
carboxymethylcellulose-alginate bioink for direct and 93. Maestro A, González C, Gutiérrez JM, 2002, Shear thinning
indirect 3D printing of human knee meniscal scaffold. and thixotropy of HMHEC and HEC water solutions.
Intbiol Macromol, 195: 179–189. J Rheol, 46: 1445–1457.
https://doi.org/10.1016/j.ijbiomac.2021.11.184 https://doi.org/10.1122/1.1516789
V 228 https://doi.org/10.18063/ijb.v9i1.637
Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)

