Page 234 - IJB-9-1
P. 234
International Journal of Bioprinting Cellulose-based bio-inks for bone and cartilage TE
29. Osorio DA, Lee BEJ, Kwiecien JM, et al., 2019, Cross-linked 40. Dugan JM, Gough JE, Eichhorn SJ, 2013, Bacterial cellulose
cellulose nanocrystal aerogels as viable bone tissue scaffolds. scaffolds and cellulose nanowhiskers for tissue engineering.
Acta Biomater, 87: 152–165. Nanomedicine Lond, 8: 287–298.
https://doi.org/10.1016/j.actbio.2019.01.049 https://doi.org/10.2217/nnm.12.211
30. Wang K, Nune KC, Misra RD, 2016, The functional response 41. Swingler S, Gupta A, Gibson H, et al., 2021, Recent advances
of alginate-gelatin-nanocrystalline cellulose injectable and applications of bacterial cellulose in biomedicine.
hydrogels toward delivery of cells and bioactive molecules. Polymers, 13: 412.
Acta Biomater, 36: 143–151. https://doi.org/10.3390/polym13030412
https://doi.org/10.1016/j.actbio.2016.03.016 42. Salgado L, Blank S, Esfahani RAM, et al., 2019,
31. Maturavongsadit P, Narayanan LK, Chansoria P, et al., 2021, Missense mutations in a transmembrane domain of the
Cell-laden nanocellulose/chitosan-based bioinks for 3D Komagataeibacter xylinus BcsA lead to changes in cellulose
bioprinting and enhanced osteogenic cell differentiation. synthesis. BMC Microbiol, 19: 216.
ACS Appl Bio Mater, 4: 2342–2353. https://doi.org/10.1186/s12866-019-1577-5
https://doi.org/10.1021/acsabm.0c01108 43. Ishikawa A, Matsuoka M, Tsuchida T, et al., 2014, Increase
in cellulose production by sulfaguanidine-resistant mutants
32. Murphy WL, McDevitt TC, Engler AJ, 2014, Materials as derived fromacetobacter xylinumsubsp.sucrofermentans.
stem cell regulators. Nat Mater, 13: 547–557.
Biosci Biotechnol Biochem, 59: 2259–2262.
https://doi.org/10.1038/nmat3937 https://doi.org/10.1271/bbb.59.2259
33. Dutta SD, Hexiu J, Patel DK, et al., 2021, 3D-printed 44. Stumpf TR, Yang X, Zhang J, et al., 2018, In situ and ex situ
bioactive and biodegradable hydrogel scaffolds of alginate/ modifications of bacterial cellulose for applications in tissue
gelatin/cellulose nanocrystals for tissue engineering. Int J engineering. Mat Sci Eng C, Mater biol Appl, 82: 372–383.
Biol Macromol, 167: 644–658.
https://doi.org/10.1016/j.msec.2016.11.121
https://doi.org/10.1016/j.ijbiomac.2020.12.011
45. Zaborowska M, Bodin A, Bäckdahl H, et al., 2010,
34. Patel DK, Dutta SD, Shin WC, et al., 2021, Fabrication Microporous bacterial cellulose as a potential scaffold for
and characterization of 3D printable nanocellulose-based bone regeneration. Acta Biomater, 6: 2540–2547.
hydrogels for tissue engineering. RSC Adv, 11: 7466–7478.
https://doi.org/10.1016/j.actbio.2010.01.004
https://doi.org/10.1039/d0ra09620b
46. Fang B, Wan YZ, Tang TT, et al., 2009, Proliferation and
35. Hosseinidoust Z, Alam MN, Sim G, et al., 2015, Cellulose osteoblastic differentiation of human bone marrow stromal
nanocrystals with tunable surface charge for nanomedicine. cells on hydroxyapatite/bacterial cellulose nanocomposite
Nanoscale, 7: 16647–16657. scaffolds. Tissue Eng Part A, 15: 1091–1098.
https://doi.org/10.1039/c5nr02506k https://doi.org/10.1089/ten.tea.2008.0110
36. Nelson KIM, Retsina T, 2014, Innovative nanocellulose 47. Krontiras P, Gatenholm P, Hägg DA, 2015, Adipogenic
process breaks the cost barrier. TAPPI J, 13: 19–23. differentiation of stem cells in three-dimensional porous
bacterial nanocellulose scaffolds. J Biomed Mater Res Part B,
https://doi.org/10.32964/tj13.5.19 Appl biomater, 103: 195–203.
37. Jessop ZM, Al-Sabah A, Gao N, et al., 2019, Printability of https://doi.org/10.1002/jbm.b.33198
pulp derived crystal, fibril and blend nanocellulose-alginate
bioinks for extrusion 3D bioprinting. Biofabrication, 11: 48. Bian H, Chen L, Dai H, et al., 2017, Integrated production
045006. of lignin containing cellulose nanocrystals (LCNC) and
nanofibrils (LCNF) using an easily recyclable di-carboxylic
https://doi.org/10.1088/1758-5090/ab0631 acid. Carbohydr Polym, 167: 167–176.
38. Barna M, Niswander L, 2007, Visualization of cartilage https://doi.org/10.1016/j.carbpol.2017.03.050
formation: insight into cellular properties of skeletal 49. Wang X, Tang S, Chai S, et al., 2021, Preparing printable
progenitors and chondrodysplasia syndromes. Dev Cell, 12: bacterial cellulose based gelatin gel to promote in vivo bone
931–941. regeneration. Carbohydr Polym, 270: 118342.
https://doi.org/10.1016/j.devcel.2007.04.016 https://doi.org/10.1016/j.carbpol.2021.118342
39. Williams WS, Cannon RE, 1989, Alternative environmental 50. Kondo T, Kose R, Naito H, et al., 2014, Aqueous counter
roles for cellulose produced by acetobacter xylinum. Appl collision using paired water jets as a novel means of
Environ Microbiol, 55: 2448–2452. preparing bio-nanofibers. Carbohydr Polym, 112: 284–290.
https://doi.org/10.1128/aem.55.10.2448-2452.1989 https://doi.org/10.1016/j.carbpol.2014.05.064
V
Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023) 226 https://doi.org/10.18063/ijb.v9i1.637

