Page 234 - IJB-9-1
P. 234

International Journal of Bioprinting                         Cellulose-based bio-inks for bone and cartilage TE



            29.  Osorio DA, Lee BEJ, Kwiecien JM, et al., 2019, Cross-linked   40.  Dugan JM, Gough JE, Eichhorn SJ, 2013, Bacterial cellulose
               cellulose nanocrystal aerogels as viable bone tissue scaffolds.   scaffolds and cellulose nanowhiskers for tissue engineering.
               Acta Biomater, 87: 152–165.                        Nanomedicine Lond, 8: 287–298.
               https://doi.org/10.1016/j.actbio.2019.01.049       https://doi.org/10.2217/nnm.12.211
            30.  Wang K, Nune KC, Misra RD, 2016, The functional response   41.  Swingler S, Gupta A, Gibson H, et al., 2021, Recent advances
               of alginate-gelatin-nanocrystalline cellulose injectable   and applications of bacterial cellulose in biomedicine.
               hydrogels toward delivery of cells and bioactive molecules.   Polymers, 13: 412.
               Acta Biomater, 36: 143–151.                        https://doi.org/10.3390/polym13030412

               https://doi.org/10.1016/j.actbio.2016.03.016    42.  Salgado  L, Blank S, Esfahani RAM, et  al., 2019,
            31.  Maturavongsadit P, Narayanan LK, Chansoria P, et al., 2021,   Missense mutations in a transmembrane domain of the
               Cell-laden nanocellulose/chitosan-based bioinks for 3D   Komagataeibacter xylinus BcsA lead to changes in cellulose
               bioprinting and enhanced osteogenic cell differentiation.   synthesis. BMC Microbiol, 19: 216.
               ACS Appl Bio Mater, 4: 2342–2353.                  https://doi.org/10.1186/s12866-019-1577-5
               https://doi.org/10.1021/acsabm.0c01108          43.  Ishikawa A, Matsuoka M, Tsuchida T, et al., 2014, Increase
                                                                  in cellulose production by sulfaguanidine-resistant mutants
            32.  Murphy WL, McDevitt TC, Engler AJ, 2014, Materials as   derived fromacetobacter xylinumsubsp.sucrofermentans.
               stem cell regulators. Nat Mater, 13: 547–557.
                                                                  Biosci Biotechnol Biochem, 59: 2259–2262.
               https://doi.org/10.1038/nmat3937                   https://doi.org/10.1271/bbb.59.2259
            33.  Dutta SD, Hexiu J, Patel DK, et  al., 2021, 3D-printed   44.  Stumpf TR, Yang X, Zhang J, et al., 2018, In situ and ex situ
               bioactive and biodegradable hydrogel scaffolds of alginate/  modifications of bacterial cellulose for applications in tissue
               gelatin/cellulose nanocrystals for tissue engineering.  Int J   engineering. Mat Sci Eng C, Mater biol Appl, 82: 372–383.
               Biol Macromol, 167: 644–658.
                                                                  https://doi.org/10.1016/j.msec.2016.11.121
               https://doi.org/10.1016/j.ijbiomac.2020.12.011
                                                               45.  Zaborowska M, Bodin A, Bäckdahl H, et  al., 2010,
            34.  Patel DK, Dutta SD, Shin WC, et  al., 2021, Fabrication   Microporous bacterial cellulose as a potential scaffold for
               and  characterization  of  3D  printable  nanocellulose-based   bone regeneration. Acta Biomater, 6: 2540–2547.
               hydrogels for tissue engineering. RSC Adv, 11: 7466–7478.
                                                                  https://doi.org/10.1016/j.actbio.2010.01.004
               https://doi.org/10.1039/d0ra09620b
                                                               46.  Fang B, Wan YZ, Tang TT, et  al., 2009, Proliferation and
            35.  Hosseinidoust Z, Alam MN, Sim G, et al., 2015, Cellulose   osteoblastic differentiation of human bone marrow stromal
               nanocrystals with tunable surface charge for nanomedicine.   cells  on hydroxyapatite/bacterial cellulose  nanocomposite
               Nanoscale, 7: 16647–16657.                         scaffolds. Tissue Eng Part A, 15: 1091–1098.
               https://doi.org/10.1039/c5nr02506k                 https://doi.org/10.1089/ten.tea.2008.0110
            36.  Nelson KIM, Retsina T, 2014, Innovative nanocellulose   47.  Krontiras P, Gatenholm P, Hägg DA, 2015, Adipogenic
               process breaks the cost barrier. TAPPI J, 13: 19–23.   differentiation of stem cells in three-dimensional porous
                                                                  bacterial nanocellulose scaffolds. J Biomed Mater Res Part B,
               https://doi.org/10.32964/tj13.5.19                 Appl biomater, 103: 195–203.
            37.  Jessop ZM, Al-Sabah A, Gao N, et al., 2019, Printability of   https://doi.org/10.1002/jbm.b.33198
               pulp derived crystal, fibril and blend nanocellulose-alginate
               bioinks for extrusion 3D bioprinting.  Biofabrication, 11:   48.  Bian H, Chen L, Dai H, et al., 2017, Integrated production
               045006.                                            of lignin containing cellulose nanocrystals (LCNC) and
                                                                  nanofibrils (LCNF) using an easily recyclable di-carboxylic
               https://doi.org/10.1088/1758-5090/ab0631           acid. Carbohydr Polym, 167: 167–176.
            38.  Barna M, Niswander L, 2007, Visualization of cartilage   https://doi.org/10.1016/j.carbpol.2017.03.050
               formation: insight into cellular properties of skeletal   49.  Wang X, Tang S, Chai S, et al., 2021, Preparing printable
               progenitors and chondrodysplasia syndromes. Dev Cell, 12:   bacterial cellulose based gelatin gel to promote in vivo bone
               931–941.                                           regeneration. Carbohydr Polym, 270: 118342.
               https://doi.org/10.1016/j.devcel.2007.04.016       https://doi.org/10.1016/j.carbpol.2021.118342
            39.  Williams WS, Cannon RE, 1989, Alternative environmental   50.  Kondo T, Kose R, Naito H, et al., 2014, Aqueous counter
               roles for cellulose produced by acetobacter xylinum. Appl   collision using paired water jets as a novel means of
               Environ Microbiol, 55: 2448–2452.                  preparing bio-nanofibers. Carbohydr Polym, 112: 284–290.
               https://doi.org/10.1128/aem.55.10.2448-2452.1989   https://doi.org/10.1016/j.carbpol.2014.05.064


            V
            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)  226                      https://doi.org/10.18063/ijb.v9i1.637
   229   230   231   232   233   234   235   236   237   238   239