Page 233 - IJB-9-1
P. 233

International Journal of Bioprinting                         Cellulose-based bio-inks for bone and cartilage TE



            8.   Piras CC, Fernández-Prieto S, De Borggraeve WM, 2017,   19.  Apelgren P, Amoroso M, Lindahl A, et  al., 2017,
               Nanocellulosic materials as bioinks for 3D bioprinting.   Chondrocytes and stem cells in 3D-bioprinted structures
               Biomater Sci, 5: 1988–1992.                        create human cartilage in vivo. PloS One, 12: e0189428.
               https://doi.org/10.1039/c7bm00510e                 https://doi.org/10.1371/journal.pone.0189428
            9.   Banvillet G, Depres G, Belgacem N, et al., 2021, Alkaline   20.  Morimune-Moriya S, Kondo S, Sugawara-Narutaki A,
               treatment combined with enzymatic hydrolysis for efficient   et al., 2014, Hydroxyapatite formation on oxidized cellulose
               cellulose  nanofibrils  production.  Carbohydr Polym,  255:   nanofibers in a solution mimicking body fluid. Polym J, 47:
               117383. \                                          158–163.
               https://doi.org/10.1016/j.carbpol.2020.117383      https://doi.org/10.1038/pj.2014.127
            10.  Isogai A, Saito T, Fukuzumi H, 2011, TEMPO-oxidized   21.  Abouzeid RE, Khiari R, Beneventi D, et al., 2018, Biomimetic
               cellulose nanofibers. Nanoscale, 3: 71–85.         mineralization of three-dimensional printed Alginate/
               https://doi.org/10.1039/c0nr00583e                 TEMPO-Oxidized cellulose nanofibril scaffolds for bone
                                                                  tissue engineering. Biomacromolecules, 19: 4442–4452.
            11.  Piras CC, Fernandez-Prieto S, De Borggraeve WM, 2017,
               Nanocellulosic materials as bioinks for 3D bioprinting.   https://doi.org/10.1021/acs.biomac.8b01325
               Biomater Sci, 5: 1988–1992.                     22.  Im S, Choe G, Seok JM,  et  al., 2022, An osteogenic
               https://doi.org/10.1039/c7bm00510e                 bioink composed of alginate, cellulose nanofibrils, and
                                                                  polydopamine nanoparticles for 3D bioprinting and bone
            12.  Starborg T, Kalson NS, Lu Y, et al., 2013, Using transmission   tissue engineering. Int J Biol Macromol, 205: 520–529.
               electron microscopy and 3View to determine collagen fibril
               size and three-dimensional organization.  Nat Protoc, 8:   https://doi.org/10.1016/j.ijbiomac.2022.02.012
               1433–1448.                                      23.  Ojansivu M, Vanhatupa S, Björkvik L, et al., 2015, Bioactive
               https://doi.org/10.1038/nprot.2013.086             glass ions as strong enhancers of osteogenic differentiation
                                                                  in human adipose stem cells.  Acta  Biomater, 21:
            13.  Rouillard AD, Berglund CM, Lee JY, et al., 2011, Methods   190–203.
               for photocrosslinking alginate hydrogel scaffolds with high
               cell viability. Tissue Eng C: Methods, 17: 173–179.   https://doi.org/10.1016/j.actbio.2015.04.017
               https://doi.org/10.1089/ten.TEC.2009.0582       24.  Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-based
                                                                  nanocellulose and bioactive glass modified gelatin-alginate
            14.  Markstedt  K,  Mantas  A,  Tournier  I, et  al.,  2015,  3D
               bioprinting human chondrocytes with nanocellulose-  bioinks for 3D bioprinting of bone cells. Biofabrication, 11:
               alginate bioink for cartilage tissue engineering applications.   035010.
               Biomacromolecules, 16: 1489–1496.                  https://doi.org/10.1088/1758-5090/ab0692
               https://doi.org/10.1021/acs.biomac.5b00188      25.  Monfared M, Mawad D, Rnjak-Kovacina J, et al., 2021,3D
            15.  Trachsel L, Johnbosco C, Lang T, et  al., 2019, Double-  bioprinting of dual-crosslinked nanocellulose hydrogels for
               network hydrogels including enzymatically crosslinked   tissue engineering applications. J Mater Chem B, 9: 6163–
               Poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-  6175.
               engineering constructs. Biomacromolecules, 20: 4502–4511.   https://doi.org/10.1039/d1tb00624j
               https://doi.org/10.1021/acs.biomac.9b01266      26.  Mtibe  A,  Linganiso  LZ,  Mathew  AP, et  al.,  2015,  A
            16.  Yasuda  K,  Ping  Gong  J,  Katsuyama  Y, et  al.,  2005,   comparative study on properties of micro and nanopapers
               Biomechanical properties of high-toughness double   produced from cellulose and cellulose nanofibres. Carbohydr
               network hydrogels. Biomaterials, 26: 4468–4475.    Polym, 118: 1–8.
               https://doi.org/10.1016/j.biomaterials.2004.11.021  https://doi.org/10.1016/j.carbpol.2014.10.007
            17.  Öztürk E, Arlov Ø, Aksel S, et al., 2016, Sulfated hydrogel   27.  Karimian  A,  Parsian  H,  Majidinia  M, et  al.,  2019,
               matrices  direct mitogenicity and maintenance of   Nanocrystalline cellulose: Preparation, physicochemical
               chondrocyte phenotype through activation of FGF signaling.   properties, and applications in drug delivery systems. Int J
               Adv Funct Mater, 26: 3649–3662.                    Biol Macromol, 133: 850–859.
               https://doi.org/10.1002/adfm.201600092             https://doi.org/10.1016/j.ijbiomac.2019.04.117
            18.  Müller M, Öztürk E, Arlov Ø, et al., 2017, Alginate Sulfate-  28.  Murizan  NIS,  Mustafa  NS,  Ngadiman  NHA, et  al.,  2020,
               nanocellulose bioinks for cartilage bioprinting applications.   Review on nanocrystalline cellulose in bone tissue
               Ann Biomed Eng, 45: 210–223.                       engineering applications. Polymers, 12: 2818.
               https://doi.org/10.1007/s10439-016-1704-5          https://doi.org/10.3390/polym12122818


            Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)
            V                                              225                      https://doi.org/10.18063/ijb.v9i1.637
   228   229   230   231   232   233   234   235   236   237   238