Page 233 - IJB-9-1
P. 233
International Journal of Bioprinting Cellulose-based bio-inks for bone and cartilage TE
8. Piras CC, Fernández-Prieto S, De Borggraeve WM, 2017, 19. Apelgren P, Amoroso M, Lindahl A, et al., 2017,
Nanocellulosic materials as bioinks for 3D bioprinting. Chondrocytes and stem cells in 3D-bioprinted structures
Biomater Sci, 5: 1988–1992. create human cartilage in vivo. PloS One, 12: e0189428.
https://doi.org/10.1039/c7bm00510e https://doi.org/10.1371/journal.pone.0189428
9. Banvillet G, Depres G, Belgacem N, et al., 2021, Alkaline 20. Morimune-Moriya S, Kondo S, Sugawara-Narutaki A,
treatment combined with enzymatic hydrolysis for efficient et al., 2014, Hydroxyapatite formation on oxidized cellulose
cellulose nanofibrils production. Carbohydr Polym, 255: nanofibers in a solution mimicking body fluid. Polym J, 47:
117383. \ 158–163.
https://doi.org/10.1016/j.carbpol.2020.117383 https://doi.org/10.1038/pj.2014.127
10. Isogai A, Saito T, Fukuzumi H, 2011, TEMPO-oxidized 21. Abouzeid RE, Khiari R, Beneventi D, et al., 2018, Biomimetic
cellulose nanofibers. Nanoscale, 3: 71–85. mineralization of three-dimensional printed Alginate/
https://doi.org/10.1039/c0nr00583e TEMPO-Oxidized cellulose nanofibril scaffolds for bone
tissue engineering. Biomacromolecules, 19: 4442–4452.
11. Piras CC, Fernandez-Prieto S, De Borggraeve WM, 2017,
Nanocellulosic materials as bioinks for 3D bioprinting. https://doi.org/10.1021/acs.biomac.8b01325
Biomater Sci, 5: 1988–1992. 22. Im S, Choe G, Seok JM, et al., 2022, An osteogenic
https://doi.org/10.1039/c7bm00510e bioink composed of alginate, cellulose nanofibrils, and
polydopamine nanoparticles for 3D bioprinting and bone
12. Starborg T, Kalson NS, Lu Y, et al., 2013, Using transmission tissue engineering. Int J Biol Macromol, 205: 520–529.
electron microscopy and 3View to determine collagen fibril
size and three-dimensional organization. Nat Protoc, 8: https://doi.org/10.1016/j.ijbiomac.2022.02.012
1433–1448. 23. Ojansivu M, Vanhatupa S, Björkvik L, et al., 2015, Bioactive
https://doi.org/10.1038/nprot.2013.086 glass ions as strong enhancers of osteogenic differentiation
in human adipose stem cells. Acta Biomater, 21:
13. Rouillard AD, Berglund CM, Lee JY, et al., 2011, Methods 190–203.
for photocrosslinking alginate hydrogel scaffolds with high
cell viability. Tissue Eng C: Methods, 17: 173–179. https://doi.org/10.1016/j.actbio.2015.04.017
https://doi.org/10.1089/ten.TEC.2009.0582 24. Ojansivu M, Rashad A, Ahlinder A, et al., 2019, Wood-based
nanocellulose and bioactive glass modified gelatin-alginate
14. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D
bioprinting human chondrocytes with nanocellulose- bioinks for 3D bioprinting of bone cells. Biofabrication, 11:
alginate bioink for cartilage tissue engineering applications. 035010.
Biomacromolecules, 16: 1489–1496. https://doi.org/10.1088/1758-5090/ab0692
https://doi.org/10.1021/acs.biomac.5b00188 25. Monfared M, Mawad D, Rnjak-Kovacina J, et al., 2021,3D
15. Trachsel L, Johnbosco C, Lang T, et al., 2019, Double- bioprinting of dual-crosslinked nanocellulose hydrogels for
network hydrogels including enzymatically crosslinked tissue engineering applications. J Mater Chem B, 9: 6163–
Poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage- 6175.
engineering constructs. Biomacromolecules, 20: 4502–4511. https://doi.org/10.1039/d1tb00624j
https://doi.org/10.1021/acs.biomac.9b01266 26. Mtibe A, Linganiso LZ, Mathew AP, et al., 2015, A
16. Yasuda K, Ping Gong J, Katsuyama Y, et al., 2005, comparative study on properties of micro and nanopapers
Biomechanical properties of high-toughness double produced from cellulose and cellulose nanofibres. Carbohydr
network hydrogels. Biomaterials, 26: 4468–4475. Polym, 118: 1–8.
https://doi.org/10.1016/j.biomaterials.2004.11.021 https://doi.org/10.1016/j.carbpol.2014.10.007
17. Öztürk E, Arlov Ø, Aksel S, et al., 2016, Sulfated hydrogel 27. Karimian A, Parsian H, Majidinia M, et al., 2019,
matrices direct mitogenicity and maintenance of Nanocrystalline cellulose: Preparation, physicochemical
chondrocyte phenotype through activation of FGF signaling. properties, and applications in drug delivery systems. Int J
Adv Funct Mater, 26: 3649–3662. Biol Macromol, 133: 850–859.
https://doi.org/10.1002/adfm.201600092 https://doi.org/10.1016/j.ijbiomac.2019.04.117
18. Müller M, Öztürk E, Arlov Ø, et al., 2017, Alginate Sulfate- 28. Murizan NIS, Mustafa NS, Ngadiman NHA, et al., 2020,
nanocellulose bioinks for cartilage bioprinting applications. Review on nanocrystalline cellulose in bone tissue
Ann Biomed Eng, 45: 210–223. engineering applications. Polymers, 12: 2818.
https://doi.org/10.1007/s10439-016-1704-5 https://doi.org/10.3390/polym12122818
Volume 9 Issue 1 (2023)olume 9 Issue 1 (2023)
V 225 https://doi.org/10.18063/ijb.v9i1.637

