Page 259 - IJB-9-1
P. 259

International Journal of Bioprinting                         3D printing of smart constructs for precise medicine


               https://doi.org/10.4184/asj.2018.12.1.171       35.  Subash A, Kandasubramanian B, 2020, 4D printing of shape
                                                                  memory polymers. Euro Polym J, 134: 109771.
            23.  Melchels FP, Feijen J, Grijpma DW, 2010, A review on
               stereolithography and its applications in biomedical      https://doi.org/10.1016/j.eurpolymj.2020.109771
               engineering. Biomaterials, 31: 6121–6130.
                                                               36.  Calvert P, 2001, Inkjet printing for materials and devices.
               https://doi.org/10.1016/j.biomaterials.2010.04.050  Chem. Mater., 13: 3299–3305.
            24.  Maruo S, Ikuta I, 2002, Submicron stereolithography for the   37.  Park JY, Gao G, Jang J, et al., 2016, 3D printed structures
               production of freely movable mechanisms by using single-  for delivery of biomolecules and cells: tissue repair and
               photon polymerization. Sens Actuators A, 100: 70–76.  regeneration. J Mater Chem B, 4: 7521–7539.
            25.  Mu Q, Wang L, Dunn CK, et al., 2017, Digital light processing      https://doi.org/10.1039/c6tb01662f
               3D printing of conductive complex structures. Addit Manuf,   38.  Singh M, Haverinen HM, Dhagat P, et al., 2010, Inkjet
               18: 74–83.
                                                                  printing-process and its applications. Adv Mater, 22: 673–685.
               https://doi.org/10.1016/j.addma.2017.08.011
                                                                  https://doi.org/10.1002/adma.200901141
            26.  Kelly BE, Bhattacharya I, Heidari H, et al., 2019, Volumetric   39.  Bihar E, Wustoni S, Pappa AM, et al., 2018, A fully inkjet-
               additive manufacturing via tomographic reconstruction.   printed disposable glucose sensor on paper.  Npj Flex
               Science, 363: 1075–1079.
                                                                  Electron, 2: 30.
               https://doi.org/10.1126/science.aau7114
                                                                  https://doi.org/10.1038/s41528-018-0044-y
            27.  Layani M, Wang X, Magdassi S, 2018, Novel materials for 3D   40.  Yang J, Katagiri D, Mao S, et al., 2016, Inkjet printing
               printing by photopolymerization. Adv Mater, 30: 1706344.
                                                                  based  assembly  of  thermoresponsive  core-shell  polymer
               https://doi.org/10.1002/adma.201706344             microcapsules for controlled drug release. J Mater Chem B,
                                                                  4: 4156–4163.
            28.  Karimi M, Ghasemi A, Zangabad PS, et al., 2016, Smart
               micro/nanoparticles  in  stimulus-responsive  drug/gene      https://doi.org/10.1039/C6TB00424E
               delivery systems. Chem Soc Rev, 45: 1457–1501.
                                                               41.  Belaid H, Nagarajan S, Teyssier C, et al., 2020, Development
               https://doi.org/10.1039/C5CS00798D                 of new biocompatible 3D printed graphene oxide-based
                                                                  scaffolds. Mater Sci Eng C Mater Biol Appl, 110: 110595.
            29.  Lee YW, Ceylan H, Yasa IC, et al., 2021, 3D-printed multi-
               stimuli-responsive mobile micromachines. ACS Appl Mater      https://doi.org/10.1016/j.msec.2019.110595
               Interfaces, 13: 12759–12766.
                                                               42.  Mohamed OA, Masood SH, Bhowmik JL, 2015, Optimization
               https://doi.org/10.1021/acsami.0c18221             of fused deposition modeling process parameters: A review of
                                                                  current research and future prospects. Adv Manuf, 3: 42–53.
            30.  Amorim FL, Lohrengel A, Neubert V, et al., 2014, Selective
               laser sintering of Mo-CuNi composite to be used as EDM      https://doi.org/10.1007/s40436-014-0097-7
               electrode. Rapid Prototyp J, 20: 59–68.
                                                               43.  Zeina I, Hutmacher DW, Tan KC,  et al., 2002, Fused
               https://doi.org/10.1108/rpj-04-2012-0035           deposition modeling of novel scaffold architectures for tissue
                                                                  engineering applications. Biomaterials, 23: 1169–1185.
            31.  Salmoria GV, Klauss P, Paggi RA, et al., 2009, Structure and
               mechanical properties of cellulose based scaffolds fabricated   44.  Ahn SH, Montero M, Odell D, et al., 2002, Anisotropic
               by selective laser sintering. Polym Test, 28: 648–652.   material properties of fused deposition modeling ABS.
                                                                  Rapid Prototyp J, 8: 248–257.
               https://doi.org/10.1016/j.polymertesting.2009.05.008
                                                                  https://doi.org/10.1108/13552540210441166
            32.  Williams JM, Adewunmi A, Schek RM, et al., 2005, Bone
               tissue engineering using polycaprolactone scaffolds   45.  Murphy SV, Atala A, 2014, 3D bioprinting of tissues and
               fabricated via selective laser sintering.  Biomaterials, 26:   organs. Nat Biotechnol, 32: 773–785.
               4817–4827.
                                                                  https://doi.org/10.1038/nbt.2958
               https://doi.org/10.1016/j.biomaterials.2004.11.057
                                                               46.  O’Brart DP, 2014, Corneal collagen cross-linking: A review.
            33.  Wiria  FE,  Leong  KF,  Chua  CK,  et  al.,  2007,  Poly-epsilon-  J Optom, 7: 113–124.
               caprolactone/hydroxyapatite for tissue  engineering scaffold      https://doi.org/10.1016/j.optom.2013.12.001
               fabrication via selective laser sintering. Acta Biomater, 3: 1–12.
                                                               47.  Kumar H, Kim K, 2020, Stereolithography 3D bioprinting.
               https://doi.org/10.1016/j.actbio.2006.07.008
                                                                  In: Crook JM, editor. 3D Bioprinting: Principles and
            34.  Mazzoli  A,  2013,  Selective  laser  sintering  in  biomedical   Protocols. New York: Springer US. p. 93–108.
               engineering. Med Biol Eng Comput, 51: 245–256.
                                                               48.  Feng M, Hu S, Qin W,  et al., 2021, Bioprinting of a blue
               https://doi.org/10.1007/s11517-012-1001-x          light-cross-linked biodegradable hydrogel encapsulating


            Volume 9 Issue 1 (2023)                        251                      https://doi.org/10.18063/ijb.v9i1.638
   254   255   256   257   258   259   260   261   262   263   264