Page 259 - IJB-9-1
P. 259
International Journal of Bioprinting 3D printing of smart constructs for precise medicine
https://doi.org/10.4184/asj.2018.12.1.171 35. Subash A, Kandasubramanian B, 2020, 4D printing of shape
memory polymers. Euro Polym J, 134: 109771.
23. Melchels FP, Feijen J, Grijpma DW, 2010, A review on
stereolithography and its applications in biomedical https://doi.org/10.1016/j.eurpolymj.2020.109771
engineering. Biomaterials, 31: 6121–6130.
36. Calvert P, 2001, Inkjet printing for materials and devices.
https://doi.org/10.1016/j.biomaterials.2010.04.050 Chem. Mater., 13: 3299–3305.
24. Maruo S, Ikuta I, 2002, Submicron stereolithography for the 37. Park JY, Gao G, Jang J, et al., 2016, 3D printed structures
production of freely movable mechanisms by using single- for delivery of biomolecules and cells: tissue repair and
photon polymerization. Sens Actuators A, 100: 70–76. regeneration. J Mater Chem B, 4: 7521–7539.
25. Mu Q, Wang L, Dunn CK, et al., 2017, Digital light processing https://doi.org/10.1039/c6tb01662f
3D printing of conductive complex structures. Addit Manuf, 38. Singh M, Haverinen HM, Dhagat P, et al., 2010, Inkjet
18: 74–83.
printing-process and its applications. Adv Mater, 22: 673–685.
https://doi.org/10.1016/j.addma.2017.08.011
https://doi.org/10.1002/adma.200901141
26. Kelly BE, Bhattacharya I, Heidari H, et al., 2019, Volumetric 39. Bihar E, Wustoni S, Pappa AM, et al., 2018, A fully inkjet-
additive manufacturing via tomographic reconstruction. printed disposable glucose sensor on paper. Npj Flex
Science, 363: 1075–1079.
Electron, 2: 30.
https://doi.org/10.1126/science.aau7114
https://doi.org/10.1038/s41528-018-0044-y
27. Layani M, Wang X, Magdassi S, 2018, Novel materials for 3D 40. Yang J, Katagiri D, Mao S, et al., 2016, Inkjet printing
printing by photopolymerization. Adv Mater, 30: 1706344.
based assembly of thermoresponsive core-shell polymer
https://doi.org/10.1002/adma.201706344 microcapsules for controlled drug release. J Mater Chem B,
4: 4156–4163.
28. Karimi M, Ghasemi A, Zangabad PS, et al., 2016, Smart
micro/nanoparticles in stimulus-responsive drug/gene https://doi.org/10.1039/C6TB00424E
delivery systems. Chem Soc Rev, 45: 1457–1501.
41. Belaid H, Nagarajan S, Teyssier C, et al., 2020, Development
https://doi.org/10.1039/C5CS00798D of new biocompatible 3D printed graphene oxide-based
scaffolds. Mater Sci Eng C Mater Biol Appl, 110: 110595.
29. Lee YW, Ceylan H, Yasa IC, et al., 2021, 3D-printed multi-
stimuli-responsive mobile micromachines. ACS Appl Mater https://doi.org/10.1016/j.msec.2019.110595
Interfaces, 13: 12759–12766.
42. Mohamed OA, Masood SH, Bhowmik JL, 2015, Optimization
https://doi.org/10.1021/acsami.0c18221 of fused deposition modeling process parameters: A review of
current research and future prospects. Adv Manuf, 3: 42–53.
30. Amorim FL, Lohrengel A, Neubert V, et al., 2014, Selective
laser sintering of Mo-CuNi composite to be used as EDM https://doi.org/10.1007/s40436-014-0097-7
electrode. Rapid Prototyp J, 20: 59–68.
43. Zeina I, Hutmacher DW, Tan KC, et al., 2002, Fused
https://doi.org/10.1108/rpj-04-2012-0035 deposition modeling of novel scaffold architectures for tissue
engineering applications. Biomaterials, 23: 1169–1185.
31. Salmoria GV, Klauss P, Paggi RA, et al., 2009, Structure and
mechanical properties of cellulose based scaffolds fabricated 44. Ahn SH, Montero M, Odell D, et al., 2002, Anisotropic
by selective laser sintering. Polym Test, 28: 648–652. material properties of fused deposition modeling ABS.
Rapid Prototyp J, 8: 248–257.
https://doi.org/10.1016/j.polymertesting.2009.05.008
https://doi.org/10.1108/13552540210441166
32. Williams JM, Adewunmi A, Schek RM, et al., 2005, Bone
tissue engineering using polycaprolactone scaffolds 45. Murphy SV, Atala A, 2014, 3D bioprinting of tissues and
fabricated via selective laser sintering. Biomaterials, 26: organs. Nat Biotechnol, 32: 773–785.
4817–4827.
https://doi.org/10.1038/nbt.2958
https://doi.org/10.1016/j.biomaterials.2004.11.057
46. O’Brart DP, 2014, Corneal collagen cross-linking: A review.
33. Wiria FE, Leong KF, Chua CK, et al., 2007, Poly-epsilon- J Optom, 7: 113–124.
caprolactone/hydroxyapatite for tissue engineering scaffold https://doi.org/10.1016/j.optom.2013.12.001
fabrication via selective laser sintering. Acta Biomater, 3: 1–12.
47. Kumar H, Kim K, 2020, Stereolithography 3D bioprinting.
https://doi.org/10.1016/j.actbio.2006.07.008
In: Crook JM, editor. 3D Bioprinting: Principles and
34. Mazzoli A, 2013, Selective laser sintering in biomedical Protocols. New York: Springer US. p. 93–108.
engineering. Med Biol Eng Comput, 51: 245–256.
48. Feng M, Hu S, Qin W, et al., 2021, Bioprinting of a blue
https://doi.org/10.1007/s11517-012-1001-x light-cross-linked biodegradable hydrogel encapsulating
Volume 9 Issue 1 (2023) 251 https://doi.org/10.18063/ijb.v9i1.638

