Page 263 - IJB-9-1
P. 263
International Journal of Bioprinting 3D printing of smart constructs for precise medicine
Sensors and imaging for wound healing: A review. Biosens https://doi.org/10.1126/sciadv.1602326
Bioelectron, 41: 30–42.
137. Li C, Lau GC, Yuan H, et al., 2020, Fast and programmable
https://doi.org/10.1016/j.bios.2012.09.029 locomotion of hydrogel-metal hybrids under light and
magnetic fields. Sci Robot, 5: eabb9822.
126. Bahl S, Nagar H, Singh I, et al., 2020, Smart materials types,
properties and applications: A review. Mater Today Proc, 28: https://doi.org/10.1126/scirobotics.abb9822
1302–1306.
138. Yang G, Wang J, Yan Y, et al., 2020, Multi-stimuli-triggered
https://doi.org/10.1016/j.matpr.2020.04.505 shape transformation of polymeric filaments derived from
127. Yu Y, Zhang J, Liu JJ, 2013, Biomedical implementation of dynamic covalent block copolymers. Biomacromolecules, 21:
liquid metal ink as drawable ECG electrode and skin circuit. 4159–4168.
PLoS One, 8: e58771. https://doi.org/10.1021/acs.biomac.0c00956
https://doi.org/10.1371/journal.pone.0058771 139. Won JY, Kim J, Gao G, et al., 2020, 3D printing of drug-
128. Gantenbein S, Masania K, Woigk W, et al., 2018, Three- loaded multi-shell rods for local delivery of bevacizumab
dimensional printing of hierarchical liquid-crystal-polymer and dexamethasone: A synergetic therapy for retinal
structures. Nature, 561: 226–230. vascular diseases. Acta Biomater, 116: 174–185.
https://doi.org/10.1038/s41586-018-0474-7 https://doi.org/10.1016/j.actbio.2020.09.015
129. Mantha S, Pillai S, Khayambashi P, et al., 2019, Smart 140. Ruskowitz ER, Comerford MP, Badeau BA, et al., 2019,
hydrogels in tissue engineering and regenerative medicine. Logical stimuli-triggered delivery of small molecules from
Materials (Basel), 12: 3323. hydrogel biomaterials. Biomater Sci, 7: 542–546.
https://doi.org/10.3390/ma12203323 https://doi.org/10.1039/c8bm01304g
130. Zarek M, Layani M, Cooperstein I, et al., 2016, 3D printing 141. Yang GH, Yeo M, Koo YW, et al., 2019, 4D bioprinting:
of shape memory polymers for flexible electronic devices. Technological advances in biofabrication. Macromol Biosci,
Adv Mater, 28: 4449–4454. 19: e1800441.
https://doi.org/10.1002/adma.201503132 https://doi.org/10.1002/mabi.201800441
131. Khoo ZX, Teoh JE, Liu Y, et al., 2015, 3D printing of smart 142. Huey DJ, Hu JC, Athanasiou KA, 2012, Unlike bone, cartilage
materials: A review on recent progresses in 4D printing. regeneration remains elusive. Science, 338: 917–921.
Virtual Phys Prototyp, 10: 103–122. https://doi.org/10.1126/science.1222454
https://doi.org/10.1080/17452759.2015.1097054 143. Narupai B, Smith PT, Nelson A, 2021, 4D printing of multi-
132. Janbaz S, Hedayati R, Zadpoor AA, 2016, Programming stimuli responsive protein-based hydrogels for autonomous
the shape-shifting of flat soft matter: from self-rolling/self- shape transformations. Adv Funct Mater, 31: 2011012.
twisting materials to self-folding origami. Mater Horizons, https://doi.org/10.1002/adfm.202011012
3: 536–547.
144. Iversen M, Monisha M, Agarwala S, 2022, Flexible, wearable
https://doi.org/10.1039/c6mh00195e and fully-printed smart patch for pH and hydration sensing
133. Zhao W, Huang Z, Liu L, et al., 2021, Porous bone tissue in wounds. Int J Bioprint, 8: 447.
scaffold concept based on shape memory PLA/Fe3O4. https://doi.org/10.18063/ijb.v8i1.447
Composites Sci Technol, 203: 108563.
145. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting
https://doi.org/10.1016/j.compscitech.2020.108563 of collagen to rebuild components of the human heart.
134. Wang Y, Cui H, Wang Y, et al., 2021, 4D printed cardiac Science, 365: 482–487.
construct with aligned myofibers and adjustable curvature https://doi.org/10.1126/science.aav9051
for myocardial regeneration. ACS Appl Mater Interfaces, 13:
12746–12758. 146. Hassani FA, Peh WY, Gammad GG, et al., 2017, A 3D
printed implantable device for voiding the bladder using
https://doi.org/10.1021/acsami.0c17610 shape memory alloy (SMA) actuators. Adv Sci (Weinh), 4:
135. Ge Q, Sakhaei AH, Lee H, et al., 2016, Multimaterial 4D 1700143.
printing with tailorable shape memory polymers. Sci Rep, https://doi.org/10.1002/advs.201700143
6: 31110.
147. Dong SL, Han L, Du CX, et al., 2017, 3D printing of aniline
https://doi.org/10.1038/srep31110 tetramer-grafted-polyethylenimine and pluronic F127
136. Zhao Z, Wu J, Mu X, et al., 2017, Origami by frontal composites for electroactive scaffolds. Macromol Rapid
photopolymerization. Sci Adv, 3: e1602326. Commun, 38: 1600551.
Volume 9 Issue 1 (2023) 255 https://doi.org/10.18063/ijb.v9i1.638

