Page 263 - IJB-9-1
P. 263

International Journal of Bioprinting                         3D printing of smart constructs for precise medicine


               Sensors and imaging for wound healing: A review. Biosens      https://doi.org/10.1126/sciadv.1602326
               Bioelectron, 41: 30–42.
                                                               137. Li C, Lau GC, Yuan H, et al., 2020, Fast and programmable
               https://doi.org/10.1016/j.bios.2012.09.029         locomotion of hydrogel-metal hybrids under light and
                                                                  magnetic fields. Sci Robot, 5: eabb9822.
            126. Bahl S, Nagar H, Singh I, et al., 2020, Smart materials types,
               properties and applications: A review. Mater Today Proc, 28:      https://doi.org/10.1126/scirobotics.abb9822
               1302–1306.
                                                               138. Yang G, Wang J, Yan Y, et al., 2020, Multi-stimuli-triggered
               https://doi.org/10.1016/j.matpr.2020.04.505        shape transformation of polymeric filaments derived from
            127. Yu Y, Zhang J, Liu JJ, 2013, Biomedical implementation of   dynamic covalent block copolymers. Biomacromolecules, 21:
               liquid metal ink as drawable ECG electrode and skin circuit.   4159–4168.
               PLoS One, 8: e58771.                               https://doi.org/10.1021/acs.biomac.0c00956
               https://doi.org/10.1371/journal.pone.0058771    139. Won JY, Kim J, Gao G, et al., 2020, 3D printing of drug-
            128. Gantenbein S, Masania K, Woigk W,  et al., 2018, Three-  loaded multi-shell rods for local delivery of bevacizumab
               dimensional printing of hierarchical liquid-crystal-polymer   and dexamethasone: A synergetic therapy for retinal
               structures. Nature, 561: 226–230.                  vascular diseases. Acta Biomater, 116: 174–185.
               https://doi.org/10.1038/s41586-018-0474-7          https://doi.org/10.1016/j.actbio.2020.09.015
            129. Mantha S, Pillai S, Khayambashi P,  et  al., 2019, Smart   140. Ruskowitz ER, Comerford MP, Badeau BA, et al., 2019,
               hydrogels in tissue engineering and regenerative medicine.   Logical stimuli-triggered delivery of small molecules from
               Materials (Basel), 12: 3323.                       hydrogel biomaterials. Biomater Sci, 7: 542–546.
               https://doi.org/10.3390/ma12203323                 https://doi.org/10.1039/c8bm01304g
            130. Zarek M, Layani M, Cooperstein I, et al., 2016, 3D printing   141. Yang GH, Yeo M, Koo YW, et  al., 2019, 4D bioprinting:
               of shape memory polymers for flexible electronic devices.   Technological advances in biofabrication. Macromol Biosci,
               Adv Mater, 28: 4449–4454.                          19: e1800441.
               https://doi.org/10.1002/adma.201503132             https://doi.org/10.1002/mabi.201800441
            131. Khoo ZX, Teoh JE, Liu Y, et al., 2015, 3D printing of smart   142. Huey DJ, Hu JC, Athanasiou KA, 2012, Unlike bone, cartilage
               materials: A review on recent progresses in 4D printing.   regeneration remains elusive. Science, 338: 917–921.
               Virtual Phys Prototyp, 10: 103–122.                https://doi.org/10.1126/science.1222454
               https://doi.org/10.1080/17452759.2015.1097054   143. Narupai B, Smith PT, Nelson A, 2021, 4D printing of multi-
            132. Janbaz S, Hedayati R, Zadpoor AA, 2016, Programming   stimuli responsive protein-based hydrogels for autonomous
               the shape-shifting of flat soft matter: from self-rolling/self-  shape transformations. Adv Funct Mater, 31: 2011012.
               twisting materials to self-folding origami. Mater Horizons,      https://doi.org/10.1002/adfm.202011012
               3: 536–547.
                                                               144. Iversen M, Monisha M, Agarwala S, 2022, Flexible, wearable
               https://doi.org/10.1039/c6mh00195e                 and fully-printed smart patch for pH and hydration sensing
            133. Zhao W, Huang Z, Liu L, et al., 2021, Porous bone tissue   in wounds. Int J Bioprint, 8: 447.
               scaffold concept based on shape memory PLA/Fe3O4.      https://doi.org/10.18063/ijb.v8i1.447
               Composites Sci Technol, 203: 108563.
                                                               145. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting
               https://doi.org/10.1016/j.compscitech.2020.108563  of collagen to rebuild components of the human heart.
            134. Wang Y, Cui H, Wang Y, et al., 2021, 4D printed cardiac   Science, 365: 482–487.
               construct with aligned myofibers and adjustable curvature      https://doi.org/10.1126/science.aav9051
               for myocardial regeneration. ACS Appl Mater Interfaces, 13:
               12746–12758.                                    146. Hassani FA, Peh WY, Gammad GG, et al., 2017, A 3D
                                                                  printed implantable device for voiding the bladder using
               https://doi.org/10.1021/acsami.0c17610             shape memory alloy (SMA) actuators. Adv Sci (Weinh), 4:
            135. Ge Q, Sakhaei AH, Lee H, et al., 2016, Multimaterial 4D   1700143.
               printing with tailorable shape memory polymers. Sci Rep,      https://doi.org/10.1002/advs.201700143
               6: 31110.
                                                               147. Dong SL, Han L, Du CX, et al., 2017, 3D printing of aniline
               https://doi.org/10.1038/srep31110                  tetramer-grafted-polyethylenimine and pluronic F127
            136. Zhao Z, Wu J, Mu X, et al., 2017, Origami by frontal   composites for electroactive scaffolds.  Macromol  Rapid
               photopolymerization. Sci Adv, 3: e1602326.         Commun, 38: 1600551.


            Volume 9 Issue 1 (2023)                        255                      https://doi.org/10.18063/ijb.v9i1.638
   258   259   260   261   262   263   264   265   266   267   268