Page 148 - IJB-9-2
P. 148

International Journal of Bioprinting                          Hybrid biofabrication of neurosecretory structures


               Healthc Mater, 2200448: e2200448.               31.  Heydari Z, Moeinvaziri F, Agarwal T,  et al., 2021, Organoids:
                                                                  A novel modality in disease modeling. Biodes Manuf, 4: 689–716.
               https://doi.org/10.1002/adhm.202200448
                                                                  https://doi.org/10.1007/s42242-021-00150-7
            21.  Wu T, Gao YY, Su J,  et al., 2022, Three-dimensional
               bioprinting of artificial ovaries by an extrusion-based   32.  Chen H, Wu Z, Gong Z, et al., 2022, Acoustic bioprinting
               method using gelatin-methacryloyl bioink.  Climacteric,   of patient-derived organoids for predicting cancer therapy
               25: 170–178.                                       responses. Adv Healthc Mater, 11: e2102784.
               https://doi.org/10.1080/13697137.2021.1921726.     https://doi.org/10.1002/adhm.202102784
            22.  Bulanova EA, Koudan EV, Degosserie J,  et al., 2017,   33.  Dai X, Shao Y, Tian X, et al., 2022, Fusion between glioma
               Bioprinting of a functional vascularized mouse thyroid   stem cells and mesenchymal stem cells promotes malignant
               gland construct. Biofabrication, 9: 034105.        progression in 3D-bioprinted models.  ACS Appl Mater
                                                                  Interfaces, 14: 35344–35356.
               https://doi.org/10.1088/1758-5090/aa7fdd
                                                                  https://doi.org/10.1021/acsami.2c06658
            23.  Yu HW, Kim BS, Lee JY,  et al., 2021, Tissue printing for
               engineering transplantable human parathyroid patch to   34.  Zennifer A, Manivannan S, Sethuraman S, et al., 2022, 3D
               improve parathyroid engraftment, integration, and hormone   bioprinting and photocrosslinking: Emerging strategies and
               secretion in vivo. Biofabrication, 13: 035033.     future perspectives. Biomater Adv, 134: 112576.
               https://doi.org/10.1088/1758-5090/abf740           https://doi.org/10.1016/j.msec.2021.112576
            24.  Zubizarreta ME, Xiao S, 2020, Bioengineering models of   35.  Matai I, Kaur G, Seyedsalehi A,  et  al., 2020, Progress in
               female reproduction. Biodes Manuf, 3: 237–251.     3D bioprinting technology for tissue/organ regenerative
                                                                  engineering. Biomaterials, 226: 119536.
               https://doi.org/10.1007/s42242-020-00082-8
                                                                  https://doi.org/10.1016/j.biomaterials.2019.119536
            25.  Diao J, Zhang C, Zhang D, et al., 2019, Role and mechanisms
               of a three-dimensional bioprinted microtissue model in   36.  Li Q, Zhang B, Xue Q,  et al., 2021, A systematic thermal
               promoting proliferation and invasion of growth-hormone-  analysis for accurately predicting the extrusion printability
               secreting pituitary adenoma cells. Biofabrication, 11: 025006.   of alginate-gelatin-based hydrogel bioinks.  Int J Bioprint,
                                                                  7: 394.
               https://doi.org/10.1088/1758-5090/aaf7ea
                                                                  https://doi.org/10.18063/ijb.v7i3.394
            26.  Castilho M, de Ruijter M, Beirne S,  et al., 2020,
               Multitechnology biofabrication: A  new approach for the   37.  Huang Y, Li X, Lu Z,  et al., 2020, Nanofiber-reinforced
               manufacturing  of  functional  tissue  structures?  Trends   bulk hydrogel: Preparation and structural, mechanical, and
               Biotechnol, 38: 1316–1328.                         biological properties. J Mater Chem B, 8: 9794–9803.
               https://doi.org/10.1016/j.tibtech.2020.04.014      https://doi.org/10.1039/d0tb01948h
            27.  Thakor J, Ahadian S, Niakan A,  et al., 2020, Engineered   38.  Lai WF, 2021, Development of hydrogels with self-healing
               hydrogels for brain tumor culture and therapy.  Biodes   properties for delivery of bioactive agents.  Mol Pharm,
               Manuf, 3: 203–226.                                 18: 1833–1841.
               https://doi.org/10.1007/s42242-020-00084-6         https://doi.org/10.1021/acs.molpharmaceut.0c00874
            28.  Xu T, Binder KW, Albanna MZ, et al., 2013, Hybrid printing   39.  Naegeli KM, Kural MH, Li Y, et al., 2022, Bioengineering
               of mechanically and biologically improved constructs for   human tissues and the future of vascular replacement. Circ
               cartilage tissue  engineering applications.  Biofabrication,   Res, 131(1):109–126.
               5: 015001.
                                                                  https://doi.org/10.1161/CIRCRESAHA.121.319984
               https://doi.org/10.1088/1758-5082/5/1/015001
                                                               40.  Yao ZC, Yang YH, Kong J,  et al., 2022, Biostimulatory
            29.  Hwang DG, Jo Y, Kim M, et al., 2021, A 3D bioprinted hybrid   micro-fragmented nanofiber-hydrogel composite improves
               encapsulation system for delivery of human pluripotent stem   mesenchymal stem cell delivery and soft tissue remodeling.
               cell-derived pancreatic islet-like aggregates. Biofabrication,   Small, 18: e2202309.
               14: 014101.
                                                                  https://doi.org/10.1002/smll.202202309
               https://doi.org/10.1088/1758-5090/ac23ac
                                                               41.  Xu M, Su T, Jin X, et al., 2022, Inflammation-mediated matrix
            30.  Yoon Y, Kim CH, Lee JE, et al., 2019, 3D bioprinted complex   remodeling of extracellular matrix-mimicking biomaterials
               constructs reinforced by hybrid multilayers of electrospun   in  tissue engineering  and regenerative  medicine.  Acta
               nanofiber sheets. Biofabrication, 11: 025015.      Biomater, 151: 106–117.
               https://doi.org/10.1088/1758-5090/ab08c2           https://doi.org/10.1016/j.actbio.2022.08.015


            Volume 9 Issue 2 (2023)                        140                      https://doi.org/10.18063/ijb.v9i2.659
   143   144   145   146   147   148   149   150   151   152   153