Page 165 - IJB-9-2
P. 165
International Journal of Bioprinting Enhanced osteogenesis in gelatin releasing bioink
34. Chung JHY, Naficy S, Yue Z, et al., 2013, Bio-ink properties https://doi.org/10.3390/ma14040858
and printability for extrusion printing living cells. Biomater 38. Wu S-C, Chang W-H, Dong G-C, et al., 2011, Cell adhesion
Sci, 1(7):763-773.
and proliferation enhancement by gelatin nanofiber
https://doi.org/10.1039/c3bm00012e scaffolds. J Bioact Compat Polym, 26(6):565–577.
35. Li X, Wang X, Wang X, et al., 2018, 3D bioprinted rat https://doi.org/10.1177/0883911511423563
Schwann cell-laden structures with shape flexibility and 39. Rosellini E, Cristallini C, Barbani N, et al., 2009, Preparation
enhanced nerve growth factor expression. 3 Biotech, and characterization of alginate/gelatin blend films for
8(8):342.
cardiac tissue engineering. J Biomed Mater Res Part A,
https://doi.org/10.1007/s13205-018-1341-9 91A(2):447–453.
36. He Y, Yang F, Zhao H, et al., 2016, Research on the printability https://doi.org/10.1002/jbm.a.32216
of hydrogels in 3D bioprinting. Sci Rep, 6:29977.
40. Hoch E, Schuh C, Hirth T, et al., 2012, Stiff gelatin hydrogels
https://doi.org/10.1038/srep29977 can be photo-chemically synthesized from low viscous
gelatin solutions using molecularly functionalized gelatin
37. Łabowska MB, Cierluk K, Jankowska AM, et al., 2021, A
review on the adaption of alginate-gelatin hydrogels for 3D with a high degree of methacrylation. J Mater Sci Mater
cultures and bioprinting. Materials, 14(4):858. Med, 23(11):2607–2617.
https://doi.org/10.1007/s10856-012-4731-2
Volume 9 Issue 2 (2023) 157 https://doi.org/10.18063/ijb.v9i2.660

