Page 164 - IJB-9-2
P. 164

International Journal of Bioprinting                          Enhanced osteogenesis in gelatin releasing bioink



            10.  Malda J, Visser J, Melchels FP, et al., 2013, 25th anniversary   extracellular matrix vasculature and parenchyma. Cell Mol
               article: Engineering hydrogels for biofabrication. Adv Mater,   Bioeng, 13(6):633–645.
               25(36):5011–5028.                                  https://doi.org/10.1007/s12195-020-00634-z
               https://doi.org/10.1002/adma.201302042          23.  Alipal J, Mohd Pu’ad NAS, Lee TC, et al., 2021, A review
            11.  Ramiah P, du Toit LC, Choonara YE, et al., 2020, Hydrogel-  of  gelatin:  Properties,  sources,  process,  applications, and
               based bioinks for 3D bioprinting in tissue regeneration.   commercialisation. Mater Today Proc, 42:240–250.
               Front Mater, 7:76.                                 https://doi.org/10.1016/j.matpr.2020.12.922
               https://doi.org/10.3389/fmats.2020.00076        24.  Wu S-C, Chang W-H, Dong G-C, et al., 2011, Cell adhesion
            12.  Fatimi A, Okoro OV, Podstawczyk D, et al., 2022, Natural   and proliferation enhancement by gelatin nanofiber
               hydrogel-based bio-inks for 3D bioprinting in tissue   scaffolds. J Bioact Compat Polym, 26(6):565–577.
               engineering: A review. Gels, 8(3):179.             https://doi.org/10.1177/0883911511423563
            13.  Gopinathan J, Noh I, 2018, Recent trends in bioinks for 3D   25.  Bello AB, Kim D, Kim D, et al., 2020, Engineering and
               printing. Biomater Res, 22(1):11.                  functionalization  of  gelatin  biomaterials:  From  cell
               https://doi.org/10.1186/s40824-018-0122-1          culture to medical applications.  Tissue  Eng  Part  B  Rev,
                                                                  26(2):164–180.
            14.  Kim D, Kim M, Lee J, et al., 2022, Review on multicomponent
               hydrogel bioinks based on natural biomaterials for   https://doi.org/10.1089/ten.TEB.2019.0256
               bioprinting 3D liver tissues.  Front Bioeng Biotechnol,   26.  Klotz BJ, Gawlitta D, Rosenberg AJWP, et al., 2016, Gelatin-
               10:764682.                                         methacryloyl hydrogels: Towards biofabrication-based
                                                                  tissue repair. Trends Biotechnol, 34(5):394–407.
               https://doi.org/10.3389/fbioe.2022.764682
                                                                  https://doi.org/10.1016/j.tibtech.2016.01.002
            15.  Paxton N, Smolan W, Böck T, et al., 2017, Proposal to assess
               printability of bioinks for extrusion-based bioprinting   27.  Contessi Negrini N, Celikkin N, Tarsini P, et al., 2020, Three-
               and evaluation of rheological properties governing   dimensional printing of chemically crosslinked gelatin
               bioprintability. Biofabrication, 9(4):044107.      hydrogels for adipose tissue engineering.  Biofabrication,
                                                                  12(2):025001.
               https://doi.org/10.1088/1758-5090/aa8dd8
                                                                  https://doi.org/10.1088/1758-5090/ab56f9
            16.  Rastogi P, Kandasubramanian B, 2019, Review of alginate-
               based hydrogel bioprinting for application in tissue   28.  Ehrmann A, 2021, Non-toxic crosslinking of electrospun
               engineering. Biofabrication, 11(4):042001.         gelatin nanofibers for tissue engineering and biomedicine—A
                                                                  review. Polymers, 13(12):1973.
               https://doi.org/10.1088/1758-5090/ab331e
                                                               29.   Othman SA, Soon CF, Ma NL, et al., 2021, Alginate-gelatin
            17.  Lee KY, Mooney DJ, 2012, Alginate: Properties and   bioink for bioprinting of hela spheroids in alginate-gelatin
               biomedical applications. Prog Polym Sci, 37(1):106–126.  hexagon shaped scaffolds. Polym Bull, 78(11):6115–6135.
               https://doi.org/10.1016/j.progpolymsci.2011.06.003  https://doi.org/10.1007/s00289-020-03421-y
            18.  Sardelli L, Tunesi M, Briatico-Vangosa F, et al., 2021,   30.   Gao T, Gillispie GJ, Copus JS,  et al., 2018, Optimization
               3D-reactive printing of engineered alginate inks. Soft Matter,   of  gelatin–alginate  composite  bioink  printability
               17(35):8105–8117.                                  using  rheological  parameters:  A  systematic  approach.
                                                                  Biofabrication, 10(3):034106.
               https://doi.org/10.1039/D1SM00604E
                                                                  https://doi.org/10.1088/1758-5090/aacdc7
            19.  Piras CC, Smith DK, 2020, Multicomponent polysaccharide
               alginate-based bioinks. J Mater Chem B, 8(36):8171–8188.  31.   Li Z, Huang S, Liu Y, et al., 2018, Tuning alginate-gelatin
                                                                  bioink properties by varying solvent and their impact on
               https://doi.org/10.1039/D0TB01005G                 stem cell behavior. Sci Rep, 8(1):8020.
            20.  Andersen  T,  Auk-Emblem  P,  Dornish  M,  2015,  3D   https://doi.org/10.1038/s41598-018-26407-3
               cell culture in alginate hydrogels.  Microarrays (Basel,
               Switzerland), 4(2):133–161.                     32.  Kim AY, Kim Y, Lee SH,  et al., 2017, Effect of gelatin on
                                                                  osteogenic cell sheet formation using canine adipose-derived
               https://doi.org/10.3390/microarrays4020133         mesenchymal stem cells. Cell Transplant, 26(1):115–123.
            21.  Neves MI, Moroni L, Barrias CC, 2020, Modulating alginate   https://doi.org/10.3727/096368916x693338
               hydrogels for improved biological performance as cellular
               3D microenvironments. Front Bioeng Biotechnol, 8:665.  33.  Hersel U, Dahmen C, Kessler H, 2003, RGD modified
                                                                  polymers: Biomaterials for stimulated cell adhesion and
               https://doi.org/10.3389/fbioe.2020.00665           beyond. Biomaterials, 24(24):4385–4415.
            22.  Tang-Quan KR, Xi Y, Hochman-Mendez C, et al., 2020,   https://doi.org/10.1016/S0142-9612(03)00343-0
               Gelatin promotes cell retention within decellularized heart

            Volume 9 Issue 2 (2023)                        156                     https://doi.org/10.18063/ijb.v9i2.660
   159   160   161   162   163   164   165   166   167   168   169