Page 164 - IJB-9-2
P. 164
International Journal of Bioprinting Enhanced osteogenesis in gelatin releasing bioink
10. Malda J, Visser J, Melchels FP, et al., 2013, 25th anniversary extracellular matrix vasculature and parenchyma. Cell Mol
article: Engineering hydrogels for biofabrication. Adv Mater, Bioeng, 13(6):633–645.
25(36):5011–5028. https://doi.org/10.1007/s12195-020-00634-z
https://doi.org/10.1002/adma.201302042 23. Alipal J, Mohd Pu’ad NAS, Lee TC, et al., 2021, A review
11. Ramiah P, du Toit LC, Choonara YE, et al., 2020, Hydrogel- of gelatin: Properties, sources, process, applications, and
based bioinks for 3D bioprinting in tissue regeneration. commercialisation. Mater Today Proc, 42:240–250.
Front Mater, 7:76. https://doi.org/10.1016/j.matpr.2020.12.922
https://doi.org/10.3389/fmats.2020.00076 24. Wu S-C, Chang W-H, Dong G-C, et al., 2011, Cell adhesion
12. Fatimi A, Okoro OV, Podstawczyk D, et al., 2022, Natural and proliferation enhancement by gelatin nanofiber
hydrogel-based bio-inks for 3D bioprinting in tissue scaffolds. J Bioact Compat Polym, 26(6):565–577.
engineering: A review. Gels, 8(3):179. https://doi.org/10.1177/0883911511423563
13. Gopinathan J, Noh I, 2018, Recent trends in bioinks for 3D 25. Bello AB, Kim D, Kim D, et al., 2020, Engineering and
printing. Biomater Res, 22(1):11. functionalization of gelatin biomaterials: From cell
https://doi.org/10.1186/s40824-018-0122-1 culture to medical applications. Tissue Eng Part B Rev,
26(2):164–180.
14. Kim D, Kim M, Lee J, et al., 2022, Review on multicomponent
hydrogel bioinks based on natural biomaterials for https://doi.org/10.1089/ten.TEB.2019.0256
bioprinting 3D liver tissues. Front Bioeng Biotechnol, 26. Klotz BJ, Gawlitta D, Rosenberg AJWP, et al., 2016, Gelatin-
10:764682. methacryloyl hydrogels: Towards biofabrication-based
tissue repair. Trends Biotechnol, 34(5):394–407.
https://doi.org/10.3389/fbioe.2022.764682
https://doi.org/10.1016/j.tibtech.2016.01.002
15. Paxton N, Smolan W, Böck T, et al., 2017, Proposal to assess
printability of bioinks for extrusion-based bioprinting 27. Contessi Negrini N, Celikkin N, Tarsini P, et al., 2020, Three-
and evaluation of rheological properties governing dimensional printing of chemically crosslinked gelatin
bioprintability. Biofabrication, 9(4):044107. hydrogels for adipose tissue engineering. Biofabrication,
12(2):025001.
https://doi.org/10.1088/1758-5090/aa8dd8
https://doi.org/10.1088/1758-5090/ab56f9
16. Rastogi P, Kandasubramanian B, 2019, Review of alginate-
based hydrogel bioprinting for application in tissue 28. Ehrmann A, 2021, Non-toxic crosslinking of electrospun
engineering. Biofabrication, 11(4):042001. gelatin nanofibers for tissue engineering and biomedicine—A
review. Polymers, 13(12):1973.
https://doi.org/10.1088/1758-5090/ab331e
29. Othman SA, Soon CF, Ma NL, et al., 2021, Alginate-gelatin
17. Lee KY, Mooney DJ, 2012, Alginate: Properties and bioink for bioprinting of hela spheroids in alginate-gelatin
biomedical applications. Prog Polym Sci, 37(1):106–126. hexagon shaped scaffolds. Polym Bull, 78(11):6115–6135.
https://doi.org/10.1016/j.progpolymsci.2011.06.003 https://doi.org/10.1007/s00289-020-03421-y
18. Sardelli L, Tunesi M, Briatico-Vangosa F, et al., 2021, 30. Gao T, Gillispie GJ, Copus JS, et al., 2018, Optimization
3D-reactive printing of engineered alginate inks. Soft Matter, of gelatin–alginate composite bioink printability
17(35):8105–8117. using rheological parameters: A systematic approach.
Biofabrication, 10(3):034106.
https://doi.org/10.1039/D1SM00604E
https://doi.org/10.1088/1758-5090/aacdc7
19. Piras CC, Smith DK, 2020, Multicomponent polysaccharide
alginate-based bioinks. J Mater Chem B, 8(36):8171–8188. 31. Li Z, Huang S, Liu Y, et al., 2018, Tuning alginate-gelatin
bioink properties by varying solvent and their impact on
https://doi.org/10.1039/D0TB01005G stem cell behavior. Sci Rep, 8(1):8020.
20. Andersen T, Auk-Emblem P, Dornish M, 2015, 3D https://doi.org/10.1038/s41598-018-26407-3
cell culture in alginate hydrogels. Microarrays (Basel,
Switzerland), 4(2):133–161. 32. Kim AY, Kim Y, Lee SH, et al., 2017, Effect of gelatin on
osteogenic cell sheet formation using canine adipose-derived
https://doi.org/10.3390/microarrays4020133 mesenchymal stem cells. Cell Transplant, 26(1):115–123.
21. Neves MI, Moroni L, Barrias CC, 2020, Modulating alginate https://doi.org/10.3727/096368916x693338
hydrogels for improved biological performance as cellular
3D microenvironments. Front Bioeng Biotechnol, 8:665. 33. Hersel U, Dahmen C, Kessler H, 2003, RGD modified
polymers: Biomaterials for stimulated cell adhesion and
https://doi.org/10.3389/fbioe.2020.00665 beyond. Biomaterials, 24(24):4385–4415.
22. Tang-Quan KR, Xi Y, Hochman-Mendez C, et al., 2020, https://doi.org/10.1016/S0142-9612(03)00343-0
Gelatin promotes cell retention within decellularized heart
Volume 9 Issue 2 (2023) 156 https://doi.org/10.18063/ijb.v9i2.660

