Page 203 - IJB-9-2
P. 203
International Journal of Bioprinting A regulated GelMA-MSCs scaffold by three-dimensional bioprinting
organic solvents. Biomater Sci, 8: 5020–5028. cord mesenchymal stem cell-derived extracellular vesicles
promote lung adenocarcinoma growth by transferring miR-
https://doi.org10.1039/d0bm00896f
410. Cell Death Dis, 9: 218.
40. Gao Q, Niu X, Shao L, et al., 2019, 3D printing of complex
GelMA-based scaffolds with nanoclay. Biofabrication, https://doi.org/10.1038/s41419-018-0323-5
11: 035006. 51. Wen R, Umeano AC, Essegian DJ, et al., Role of
microRNA-410 in molecular oncology: A double edged
https://doi.org/10.1088/1758-5090/ab0cf6
sword. J Cell Biochem, 119: 8737–8742.
41. Gao Q, Xie C, Wang P, et al., 2020, 3D printed multi-
scale scaffolds with ultrafine fibers for providing excellent https://doi.org/10.1002/jcb.27251
biocompatibility. Mater Sci Eng C Mater Biol Appl, 52. Li S, Liu Y, Zhang T, et al., 2022, A tetrahedral framework
107: 110269. DNA-based bioswitchable miRNA inhibitor delivery system:
Application to skin anti-aging. Adv Mater, 34: 2204287.
https://doi.org/10.1016/j.msec.2019.110269
https://doi.org/10.1002/adma.202204287
42. Jensen C, Teng Y, 2020, Is it time to start transitioning from
2D to 3D cell culture. Front Mol Biosci, 7: 33. 53. Cui X, Li J, Hartanto Y, et al., 2020, Advances in extrusion
3D bioprinting: A focus on multicomponent hydrogel-based
https://doi.org/10.3389/fmolb.2020.00033
bioinks. Adv Healthc Mater, 9: e1901648.
43. Duval K, Grover H, Han LH, et al., 2017, Modeling
physiological events in 2D vs. 3D cell culture. Physiol https://doi.org/10.1002/adhm.201901648
(Bethesda), 32: 266–277. 54. Shao H, Liu A, Ke X, et al., 2017 3D robocasting magnesium-
doped wollastonite/TCP bioceramic scaffolds with improved
https://doi.org/10.1152/physiol.00036.2016
bone regeneration capacity in critical sized calvarial defects.
44. Jiang D, Ge P, Wang L, et al., 2019, A novel electrochemical J Mater Chem B, 5: 2941–2951.
mast cell-based paper biosensor for the rapid detection of
milk allergen casein. Biosens Bioelectron, 130: 299–306. https://doi.org/10.1039/c7tb00217c
55. Hwangbo H, Kim W, Kim GH, 2021, Lotus-root-like
https://doi.org/10.1016/j.bios.2019.01.050
microchanneled collagen scaffold. ACS Appl Mater
45. Nazir F, Ashraf I, Iqbal M, et al., 2021, 6-deoxy-aminocellulose Interfaces, 13: 12656–12667.
derivatives embedded soft gelatin methacryloyl (GelMA)
hydrogels for improved wound healing applications: In vitro https://doi.org/10.1021/acsami.0c14670
and in vivo studies. Int J Biol Macromol, 185: 419–433. 56. Lee HJ, Koo YW, Yeo M, et al., 2017, Recent cell printing
systems for tissue engineering. Int J Bioprint, 3:4.
https://doi.org/10.1016/j.ijbiomac
https://doi.org/10.18063/IJB.2017.01.004
46. Mader M, Jérôme V, Freitag R, et al., 2018, Ultraporous,
compressible, wettable polylactide/polycaprolactone 57. Li JW, Chen GJ, Xu XQ, et al., 2019, Advances of injectable
sponges for tissue engineering. Biomacromolecules, hydrogel-based scaffolds for cartilage regeneration. Regen
19: 1663–1673. Biomater, 6: 129–140.
https://doi.org/10.1021/acs.biomac.8b00434 https://doi.org/10.1093/rb/rbz022
47. Liang Y, Xu X, Li X, et al., 2020, Chondrocyte-targeted 58. Liu X, Hao M, Chen Z, 2021, 3D bioprinted neural tissue
microrna delivery by engineered exosomes toward a cell- constructs for spinal cord injury repair. Biomaterials,
free osteoarthritis therapy. ACS Appl Mater Interfaces, 272: 120771.
19: 36938–36947.
https://doi.org/10.1016/j.biomaterials.2021.120771
https://doi.org/10.1021/acsami.0c10458
59. Li Z, Bi Y, Wu Q, et al., 2021, A composite scaffold of
48. Yu A, Zhang T, Duan H, et al., 2017, MiR-124 contributes Wharton’s jelly and chondroitin sulphate loaded with human
to M2 polarization of microglia and confers brain umbilical cord mesenchymal stem cells repairs articular
inflammatory protection via the C/EBP-α pathway in cartilage defects in rat knee. J Mater Sci Mater Med, 29: 36.
intracerebral hemorrhage. Immunol Lett, 182: 1–11.
https://doi.org/10.1007/s10856-021-06506-w
https://doi.org/10.1016/j.imlet.2016.12.003
60. Wang SJ, Jiang D, Zhang ZZ, et al., 2019, Biomimetic
49. Cazzanelli P, Wuertz-Kozak K, 2020, MicroRNAs in nanosilica-collagen scaffolds for in situ bone regeneration:
intervertebral disc degeneration, apoptosis, inflammation, Toward a cell-free, one-step surgery. Adv Mater, 31:
and mechanobiology. Int J Mol Sci, 20: 3601. e1904341.
https://doi.org/10.3390/ijms21103601 https://doi.org/10.1002/adma.201904341
50. Dong L, Pu Y, Zhang L, et al., 2018, Human umbilical 61. Wang Y, Teng W, Zhang Z, et al., 2020, A trilogy
Volume 9 Issue 2 (2023) 195 https://doi.org/10.18063/ijb.v9i2.662

