Page 203 - IJB-9-2
P. 203

International Journal of Bioprinting              A regulated GelMA-MSCs scaffold by three-dimensional bioprinting


               organic solvents. Biomater Sci, 8: 5020–5028.      cord  mesenchymal  stem  cell-derived extracellular  vesicles
                                                                  promote lung adenocarcinoma growth by transferring miR-
               https://doi.org10.1039/d0bm00896f
                                                                  410. Cell Death Dis, 9: 218.
            40.  Gao Q, Niu X, Shao L, et al., 2019, 3D printing of complex
               GelMA-based scaffolds with nanoclay.  Biofabrication,      https://doi.org/10.1038/s41419-018-0323-5
               11: 035006.                                     51.  Wen R, Umeano AC, Essegian DJ,  et  al., Role of
                                                                  microRNA-410 in molecular oncology: A  double edged
               https://doi.org/10.1088/1758-5090/ab0cf6
                                                                  sword. J Cell Biochem, 119: 8737–8742.
            41.  Gao Q, Xie C, Wang P,  et al., 2020, 3D printed multi-
               scale scaffolds with ultrafine fibers for providing excellent      https://doi.org/10.1002/jcb.27251
               biocompatibility.  Mater Sci Eng C Mater Biol Appl,   52.  Li S, Liu Y, Zhang T, et al., 2022, A tetrahedral framework
               107: 110269.                                       DNA-based bioswitchable miRNA inhibitor delivery system:
                                                                  Application to skin anti-aging. Adv Mater, 34: 2204287.
               https://doi.org/10.1016/j.msec.2019.110269
                                                                  https://doi.org/10.1002/adma.202204287
            42.  Jensen C, Teng Y, 2020, Is it time to start transitioning from
               2D to 3D cell culture. Front Mol Biosci, 7: 33.   53.  Cui X, Li J, Hartanto Y, et al., 2020, Advances in extrusion
                                                                  3D bioprinting: A focus on multicomponent hydrogel-based
               https://doi.org/10.3389/fmolb.2020.00033
                                                                  bioinks. Adv Healthc Mater, 9: e1901648.
            43.  Duval  K,  Grover  H, Han  LH,  et al.,  2017,  Modeling
               physiological events in 2D vs. 3D cell culture. Physiol      https://doi.org/10.1002/adhm.201901648
               (Bethesda), 32: 266–277.                        54.  Shao H, Liu A, Ke X, et al., 2017 3D robocasting magnesium-
                                                                  doped wollastonite/TCP bioceramic scaffolds with improved
               https://doi.org/10.1152/physiol.00036.2016
                                                                  bone regeneration capacity in critical sized calvarial defects.
            44.  Jiang D, Ge P, Wang L, et al., 2019, A novel electrochemical   J Mater Chem B, 5: 2941–2951.
               mast cell-based paper biosensor for the rapid detection of
               milk allergen casein. Biosens Bioelectron, 130: 299–306.      https://doi.org/10.1039/c7tb00217c
                                                               55.  Hwangbo H, Kim W, Kim GH, 2021, Lotus-root-like
               https://doi.org/10.1016/j.bios.2019.01.050
                                                                  microchanneled  collagen  scaffold.  ACS Appl Mater
            45.  Nazir F, Ashraf I, Iqbal M, et al., 2021, 6-deoxy-aminocellulose   Interfaces, 13: 12656–12667.
               derivatives embedded soft gelatin methacryloyl (GelMA)
               hydrogels for improved wound healing applications: In vitro      https://doi.org/10.1021/acsami.0c14670
               and in vivo studies. Int J Biol Macromol, 185: 419–433.   56.  Lee HJ, Koo YW, Yeo M, et al., 2017, Recent cell printing
                                                                  systems for tissue engineering. Int J Bioprint, 3:4.
               https://doi.org/10.1016/j.ijbiomac
                                                                  https://doi.org/10.18063/IJB.2017.01.004
            46.  Mader M, Jérôme V, Freitag R,  et al., 2018, Ultraporous,
               compressible,  wettable  polylactide/polycaprolactone  57.  Li JW, Chen GJ, Xu XQ, et al., 2019, Advances of injectable
               sponges for tissue engineering.  Biomacromolecules,   hydrogel-based scaffolds for cartilage regeneration.  Regen
               19: 1663–1673.                                     Biomater, 6: 129–140.
               https://doi.org/10.1021/acs.biomac.8b00434         https://doi.org/10.1093/rb/rbz022
            47.  Liang  Y,  Xu  X,  Li  X,  et  al.,  2020,  Chondrocyte-targeted   58.  Liu X, Hao M, Chen Z, 2021, 3D bioprinted neural tissue
               microrna delivery by engineered exosomes toward a cell-  constructs for spinal cord injury repair.  Biomaterials,
               free  osteoarthritis therapy.  ACS Appl Mater Interfaces,   272: 120771.
               19: 36938–36947.
                                                                  https://doi.org/10.1016/j.biomaterials.2021.120771
               https://doi.org/10.1021/acsami.0c10458
                                                               59.  Li Z, Bi Y, Wu Q,  et al., 2021, A composite scaffold of
            48.  Yu A, Zhang T, Duan H, et al., 2017, MiR-124 contributes   Wharton’s jelly and chondroitin sulphate loaded with human
               to M2 polarization of microglia and confers brain   umbilical cord mesenchymal stem cells repairs articular
               inflammatory protection via  the C/EBP-α pathway in   cartilage defects in rat knee. J Mater Sci Mater Med, 29: 36.
               intracerebral hemorrhage. Immunol Lett, 182: 1–11.
                                                                  https://doi.org/10.1007/s10856-021-06506-w
               https://doi.org/10.1016/j.imlet.2016.12.003
                                                               60.  Wang SJ, Jiang D, Zhang ZZ,  et al., 2019, Biomimetic
            49.  Cazzanelli P, Wuertz-Kozak K, 2020, MicroRNAs in   nanosilica-collagen scaffolds for in situ bone regeneration:
               intervertebral disc degeneration, apoptosis, inflammation,   Toward a cell-free, one-step surgery.  Adv Mater, 31:
               and mechanobiology. Int J Mol Sci, 20: 3601.       e1904341.
               https://doi.org/10.3390/ijms21103601               https://doi.org/10.1002/adma.201904341
            50.  Dong L, Pu Y, Zhang L,  et al., 2018, Human umbilical   61.  Wang Y, Teng W, Zhang Z,  et  al., 2020, A trilogy


            Volume 9 Issue 2 (2023)                        195                      https://doi.org/10.18063/ijb.v9i2.662
   198   199   200   201   202   203   204   205   206   207   208