Page 202 - IJB-9-2
P. 202
International Journal of Bioprinting A regulated GelMA-MSCs scaffold by three-dimensional bioprinting
Dev, 23: 290–304. 3D Bioprinting for Cartilage and osteochondral tissue
engineering. Adv Healthc Mater, 6: 22.
https://doi.org/10.1089/scd.2013.0209
https://doi.org/10.1002/adhm.201700298
20. Zhang H, Wang Y, Yang G, et al., 2019, MicroRNA-30a
regulates chondrogenic differentiation of human bone 30. Liu Y, Peng L, Li L, et al., 2021, 3D-bioprinted BMSC-
marrow-derived mesenchymal stem cells through targeting laden biomimetic multiphasic scaffolds for efficient repair
Sox9. Exp Ther Med, 18: 4689–4697. of osteochondral defects in an osteoarthritic rat model.
Biomaterials, 279: 121216.
https://doi.org/10.3892/etm.2019.8148
https://doi.org/10.1016/j.biomaterials.2021.121216
21. Yin Y, Ding L, Hou Y, et al., 2021, Correction to: Upregulating
MicroRNA-410 or downregulating Wnt-11 increases 31. Zhang X, Liu Y, Zuo Q, et al., 2021, 3D bioprinting of
osteoblasts and reduces osteoclasts to alleviate osteonecrosis biomimetic bilayered scaffold consisting of decellularized
of the femoral head. Nanoscale Res Lett, 9: 43. extracellular matrix and silk fibroin for osteochondral
repair. Int J Bioprint, 7: 401.
https://doi.org/10.1186/s11671-020-03465-z
https://doi.org/10.18063/ijb.v7i4.401
22. Pan H, Dai H, Wang L, et al., 2020, MicroRNA-410-3p
modulates chondrocyte apoptosis and inflammation by 32. Boere KW, Visser J, Seyednejad H, et al., 2014, Covalent
targeting high mobility group box 1 (HMGB1) in an attachment of a three-dimensionally printed thermoplast
osteoarthritis mouse model. BMC Musculoskelet Disord, to a gelatin hydrogel for mechanically enhanced cartilage
21: 486. constructs. Acta Biomater, 10: 2602–2611.
https://doi.org/10.1186/s12891-020-03489-7 https://doi.org/10.1016/j.actbio.2014.02.041
23. Kovács B, Vajda E, Nagy EE, 2019, Regulatory Effects and 33. Rothrauff B, Shimomura K, Gottardi R, et al., 2017,
interactions of the Wnt and OPG-RANKL-RANK signaling Anatomical region-dependent enhancement of
at the bone-cartilage interface in osteoarthritis. Int J Mol Sci, 3-dimensional chondrogenic differentiation of human
20: 4653. mesenchymal stem cells by soluble meniscus extracellular
matrix. Acta Biomater, 49: 140–151.
https://doi.org/10.3390/ijms20184653
https://doi.org/10.1016/j.actbio.2016.11.046
24. Zhou Y, Zhao Z, Yan L, et al., 2021, MiR-485-3p
promotes proliferation of osteoarthritis chondrocytes and 34. Liu T, Weng W, Zhang Y, et al., 2020, Applications of gelatin
inhibits apoptosis via Notch2 and the NF-κB pathway. methacryloyl (GelMA) hydrogels in microfluidic technique-
Immunopharmacol Immunotoxicol, 43: 370–379. assisted tissue engineering. Molecules, 25: 5305.
https://doi.org/10.1080/08923973.2021.1918150 https://doi.org/10.3390/molecules25225305
25. Ma F, Li G, Yu Y, et al., 2019, MiR-33b-3p promotes 35. Jiang G, Li S, Yu K, et al., 2021, A 3D-printed PRP-GelMA
chondrocyte proliferation and inhibits chondrocyte hydrogel promotes osteochondral regeneration through M2
apoptosis and cartilage ECM degradation by targeting macrophage polarization in a rabbit model. Acta Biomater,
DNMT3A in osteoarthritis. Biochem Biophys Res Commun, 128: 150–162.
519: 430–437.
https://doi.org/10.1016/j.actbio.2021.04.010
https://doi.org10.1016/j.bbrc.2019.09.022
36. Suntornnond R, An J, Chua CK, 2017, Roles of support
26. Liu J, Gao L, Zhan N, et al., 2020, Hypoxia induced ferritin materials in 3D bioprinting-Present and future. Int J
light chain (FTL) promoted epithelia mesenchymal Bioprint, 3: 6.
transition and chemoresistance of glioma. J Exp Clin Cancer https://doi.org/10.18063/IJB.2017.01.006
Res, 39: 137.
37. Yang T, Zhang Q, Xie L, et al., 2021, HDPSC-laden GelMA
https://doi.org/10.1186/s13046-020-01641-8
microspheres fabricated using electrostatic microdroplet
27. Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting method for endodontic regeneration. Mater Sci Eng C Mater
of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro Biol Appl, 121: 111850.
neocartilage formation. Biofabrication, 8: 035002.
https://doi.org/10.1016/j.msec.2020.111850
https://doi.org/10.1088/1758-5090/8/3/035002
38. Lin C, Wang Y, Huang Z, et al., 2021, Advances in filament
28. Zhang X, Chen Y, Zhang C, et al., 2021, Effects of icariin on structure of 3D bioprinted biodegradable bone repair
the fracture healing in young and old rats and its mechanism. scaffolds. Int J Bioprint, 7: 426.
Pharm Biol, 59: 1245–1255.
https://doi.org/10.18063/ijb.v7i4.426
https://doi.org/10.1080/13880209.2021.1972121
39. Zhou L, Ramezani H, Sun M, et al., 2020, 3D printing of
29. Daly AC, Freeman FE, Gonzalez-Fernandez T, et al., 2017, high-strength chitosan hydrogel scaffolds without any
Volume 9 Issue 2 (2023) 194 https://doi.org/10.18063/ijb.v9i2.662

