Page 202 - IJB-9-2
P. 202

International Journal of Bioprinting              A regulated GelMA-MSCs scaffold by three-dimensional bioprinting


               Dev, 23: 290–304.                                  3D Bioprinting for Cartilage and osteochondral tissue
                                                                  engineering. Adv Healthc Mater, 6: 22.
               https://doi.org/10.1089/scd.2013.0209
                                                                  https://doi.org/10.1002/adhm.201700298
            20.  Zhang H, Wang Y, Yang G,  et al., 2019, MicroRNA-30a
               regulates chondrogenic differentiation of human bone   30.  Liu Y, Peng L, Li L,  et al., 2021, 3D-bioprinted BMSC-
               marrow-derived mesenchymal stem cells through targeting   laden biomimetic multiphasic scaffolds for efficient repair
               Sox9. Exp Ther Med, 18: 4689–4697.                 of osteochondral defects in an osteoarthritic rat model.
                                                                  Biomaterials, 279: 121216.
               https://doi.org/10.3892/etm.2019.8148
                                                                  https://doi.org/10.1016/j.biomaterials.2021.121216
            21.  Yin Y, Ding L, Hou Y, et al., 2021, Correction to: Upregulating
               MicroRNA-410  or downregulating  Wnt-11  increases   31.  Zhang X, Liu Y, Zuo Q,  et al., 2021, 3D bioprinting of
               osteoblasts and reduces osteoclasts to alleviate osteonecrosis   biomimetic bilayered scaffold consisting of decellularized
               of the femoral head. Nanoscale Res Lett, 9: 43.    extracellular matrix and silk fibroin for osteochondral
                                                                  repair. Int J Bioprint, 7: 401.
               https://doi.org/10.1186/s11671-020-03465-z
                                                                  https://doi.org/10.18063/ijb.v7i4.401
            22.  Pan H,  Dai H,  Wang L,  et al., 2020,  MicroRNA-410-3p
               modulates chondrocyte apoptosis and inflammation by   32.  Boere  KW,  Visser  J,  Seyednejad H,  et al.,  2014,  Covalent
               targeting high mobility group box 1 (HMGB1) in an   attachment of a three-dimensionally printed thermoplast
               osteoarthritis mouse model.  BMC Musculoskelet Disord,   to a gelatin hydrogel for mechanically enhanced cartilage
               21: 486.                                           constructs. Acta Biomater, 10: 2602–2611.
               https://doi.org/10.1186/s12891-020-03489-7          https://doi.org/10.1016/j.actbio.2014.02.041
            23.  Kovács B, Vajda E, Nagy EE, 2019, Regulatory Effects and   33.  Rothrauff  B,  Shimomura  K, Gottardi  R,  et al.,  2017,
               interactions of the Wnt and OPG-RANKL-RANK signaling   Anatomical  region-dependent  enhancement  of
               at the bone-cartilage interface in osteoarthritis. Int J Mol Sci,   3-dimensional chondrogenic differentiation of human
               20: 4653.                                          mesenchymal stem cells by soluble meniscus extracellular
                                                                  matrix. Acta Biomater, 49: 140–151.
               https://doi.org/10.3390/ijms20184653
                                                                  https://doi.org/10.1016/j.actbio.2016.11.046
            24.  Zhou  Y,  Zhao  Z,  Yan  L,  et al.,  2021,  MiR-485-3p
               promotes proliferation of osteoarthritis chondrocytes and   34.  Liu T, Weng W, Zhang Y, et al., 2020, Applications of gelatin
               inhibits apoptosis via Notch2 and the NF-κB pathway.   methacryloyl (GelMA) hydrogels in microfluidic technique-
               Immunopharmacol Immunotoxicol, 43: 370–379.        assisted tissue engineering. Molecules, 25: 5305.
               https://doi.org/10.1080/08923973.2021.1918150      https://doi.org/10.3390/molecules25225305
            25.  Ma F, Li G, Yu Y,  et al., 2019, MiR-33b-3p promotes   35.  Jiang G, Li S, Yu K, et al., 2021, A 3D-printed PRP-GelMA
               chondrocyte proliferation and inhibits chondrocyte   hydrogel promotes osteochondral regeneration through M2
               apoptosis and cartilage ECM degradation by targeting   macrophage polarization in a rabbit model. Acta Biomater,
               DNMT3A in osteoarthritis. Biochem Biophys Res Commun,   128: 150–162.
               519: 430–437.
                                                                  https://doi.org/10.1016/j.actbio.2021.04.010
               https://doi.org10.1016/j.bbrc.2019.09.022
                                                               36.  Suntornnond R, An J, Chua CK, 2017, Roles of support
            26.  Liu J, Gao L, Zhan N, et al., 2020, Hypoxia induced ferritin   materials in 3D bioprinting-Present and future.  Int J
               light  chain  (FTL)  promoted  epithelia  mesenchymal   Bioprint, 3: 6.
               transition and chemoresistance of glioma. J Exp Clin Cancer      https://doi.org/10.18063/IJB.2017.01.006
               Res, 39: 137.
                                                               37.  Yang T, Zhang Q, Xie L, et al., 2021, HDPSC-laden GelMA
               https://doi.org/10.1186/s13046-020-01641-8
                                                                  microspheres fabricated using electrostatic microdroplet
            27.  Costantini M, Idaszek J, Szöke K, et al., 2016, 3D bioprinting   method for endodontic regeneration. Mater Sci Eng C Mater
               of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro   Biol Appl, 121: 111850.
               neocartilage formation. Biofabrication, 8: 035002.
                                                                  https://doi.org/10.1016/j.msec.2020.111850
               https://doi.org/10.1088/1758-5090/8/3/035002
                                                               38.  Lin C, Wang Y, Huang Z, et al., 2021, Advances in filament
            28.  Zhang X, Chen Y, Zhang C, et al., 2021, Effects of icariin on   structure of  3D bioprinted biodegradable bone repair
               the fracture healing in young and old rats and its mechanism.   scaffolds. Int J Bioprint, 7: 426.
               Pharm Biol, 59: 1245–1255.
                                                                  https://doi.org/10.18063/ijb.v7i4.426
               https://doi.org/10.1080/13880209.2021.1972121
                                                               39.  Zhou L, Ramezani H, Sun M, et al., 2020, 3D printing of
            29.  Daly AC, Freeman FE, Gonzalez-Fernandez T, et al., 2017,   high-strength chitosan hydrogel scaffolds without any


            Volume 9 Issue 2 (2023)                        194                      https://doi.org/10.18063/ijb.v9i2.662
   197   198   199   200   201   202   203   204   205   206   207