Page 201 - IJB-9-2
P. 201

International Journal of Bioprinting              A regulated GelMA-MSCs scaffold by three-dimensional bioprinting


            and all animal experiments were approved by the       https://doi.org/10.1002/biot.202000095
            Experimental  Animal  Ethics Committee  of the  First   10.  Xiao S, Zhao T, Wang J, et al., 2019, Gelatin methacrylate
            Affiliated Hospital of Soochow University. The approval ID   (GelMA)-based hydrogels for cell transplantation: An
            is SUDA20220530A01.                                   effective strategy for tissue engineering. Stem Cell Rev Rep,
                                                                  15: 664–679.
            Consent for publication
                                                                  https://doi.org/10.1007/s12015-019-09893-4
              Not applicable.                                  11.  Nichol JW, Koshy ST, Bae H,  et  al., 2010, Cell-laden

            Availability of data                                  microengineered  gelatin  methacrylate  hydrogels.
                                                                  Biomaterials, 31: 5536–5544.
              The raw/processed data required to reproduce that      https://doi.org/10.1016/j.biomaterials.2010.03.064
            these findings are available from the authors.
                                                               12.  Mei Q, Rao J, Bei HP, et al., 2021, 3D bioprinting photo-
            References                                            crosslinkable hydrogels for bone and cartilage repair. Int J
                                                                  Bioprint, 24: 367.
            1.   Chen D, Shen J, Zhao W, et al., 2017, Osteoarthritis: toward      https://doi.org/10.18063/ijb.v7i3.367
               a comprehensive understanding of pathological mechanism.
               Bone Res, 5: 16044.                             13.  Zhang X, Li J, Ye P, et al., 2017, Coculture of mesenchymal
                                                                  stem cells and  endothelial cells  enhances host tissue
                https://doi.org/10.1038/boneres.2016.44
                                                                  integration  and  epidermis  maturation  through  AKT
            2.   Decker RS. Articular cartilage and joint development from   activation in gelatin methacryloyl hydrogel-based skin
               embryogenesis to adulthood. Semin Cell Dev Biol, 62: 50–56.   model. Acta Biomater, 59: 317–326.
               https://doi.org/10.1016/j.semcdb.2016.10.005       https://doi.org/10.1016/j.actbio.2017.07.001
            3.   Chen S, Fu P, Wu H, et al., 2017, Meniscus, articular cartilage   14.  Sun X, Ma Z, Zhao X,  et al., 2020, Three-dimensional
               and nucleus pulposus: A comparative review of cartilage-  bioprinting of multicell-laden scaffolds containing bone
               like tissues in anatomy, development and function.  Cell   morphogenic protein-4 for promoting M2 macrophage
               Tissue Res, 370: 53–70.                            polarization and accelerating bone defect repair in diabetes
                                                                  mellitus. Bioact Mater, 6: 757–769.
               https://doi.org/10.1007/s00441-017-2613-0
                                                                  https://doi.org/10.1016/j.bioactmat.2020.08.030
            4.   Campos Y, Almirall A, Fuentes G,  et al., 2019, Tissue
               engineering: An alternative to repair cartilage.  Tissue Eng   15.  Zhang Y, Huang X, Yuan Y, 2017, MicroRNA-410 promotes
               Part B Rev, 25: 357–373.                           chondrogenic differentiation of human bone marrow
                                                                  mesenchymal  stem  cells  through  down-regulating  Wnt3a.
               https://doi.org/10.1089/ten.TEB.2018.0330          Am J Transl Res, 9: 136–145.
            5.   Lories RJ, Luyten FP, 2011, The bone-cartilage unit in   16.  Lara E, Araya M, Hill C,  et  al., 2021, Role of microRNA
               osteoarthritis. Nat Rev Rheumatol, 7: 43–49.       shuttled in small extracellular vesicles derived from
               https://doi.org/10.1038/nrrheum.2010.197           mesenchymal stem/stromal cells for osteoarticular disease
                                                                  treatment. Front Immunol, 12: 768771.
            6.   Murphy  SV,  De  Coppi  P, Atala A.  Opportunities  and
               challenges of translational 3D bioprinting. Nat Biomed Eng,   https://doi.org/10.3389/fimmu.2021.768771
               4: 370–380.                                     17.  Tian Y, Guo R, Shi B, et al., 2016, MicroRNA-30a promotes
               https://doi.org/10.1038/s41551-019-0471-7          chondrogenic differentiation of mesenchymal stem
                                                                  cells  through  inhibiting  Delta-like  4  expression.  Life  Sci,
            7.   Vanaei A,  Parizi M, 2021,  An overview on  materials  and   148: 220–228.
               techniques in 3D bioprinting toward biomedical application.
               Engin Regen, 2: 1–18.                              https://doi.org/10.1016/j.lfs.2016.02.031
               https://doi.org/10.1088/1748-6041/11/2/022001   18.  Tornero-Esteban P, Hoyas JA, Villafuertes E,  et al., 2014,
                                                                  Study of the role of miRNA in mesenchymal stem cells
            8.   Zhang D, Chen Q, Shi C, 2020, Dealing with the foreign-  isolated from osteoarthritis patients.  Rev  Esp  Cir  Ortop
               body response to implanted biomaterials: Strategies and   Traumatol. 58: 138–43.
               applications of new materials. Adv Funct Mater, 31: 2007226.
                                                                  https://doi.org/10.1016/j.recot.2013.12.004
               https://doi.org/10.1002/adfm.202007226
                                                               19.  Karlsen TA, Jakobsen RB, Mikkelsen TS,  et  al., 2014,
            9.   Abdollahiyan P, Oroojalian F, Mokhtarzadeh A, et al., 2020,   MicroRNA-140 targets RALA and regulates chondrogenic
               Hydrogel-based 3D bioprinting for bone and cartilage tissue   differentiation of human mesenchymal stem cells by
               engineering. Biotechnol J, 15: e2000095.           translational enhancement of SOX9 and ACAN. Stem Cells


            Volume 9 Issue 2 (2023)                        193                      https://doi.org/10.18063/ijb.v9i2.662
   196   197   198   199   200   201   202   203   204   205   206