Page 401 - IJB-9-2
P. 401

International Journal of Bioprinting                               In situ 3D bioprinter for skin wound healing


            15.  Martin I, Smith T, Wendt D, 2009, Bioreactor-based   regeneration. J Tissue Eng Regen Med, 12: 611–621.
               roadmap for the translation of tissue engineering strategies      https://doi.org/10.1002/term.2476
               into clinical products. Trends Biotechnol, 27: 495–502.
                                                               27.  Hakimi  N,  Cheng  R,  Leng  L,  et al.,  2018,  Handheld  skin
               https://doi.org/10.1016/j.tibtech.2009.06.002
                                                                  printer: In situ formation of planar biomaterials and tissues.
            16.  Singh S, Choudhury D, Yu F, et al., 2019, In situ bioprinting-  Lab Chip, 18: 1440–1451.
               bioprinting from benchside to bedside?  Acta Biomater,      https://doi.org/10.1039/c7lc01236e
               101: 14–25.
                                                               28.  Albanna M, Binder KW, Murphy SV,  et  al., 2019,  In  situ
               https://doi.org/10.1016/j.actbio.2019.08.045
                                                                  bioprinting of autologous skin cells accelerates wound
            17.  Samandari M, Mostafavi A, Quint J,  et al., 2022,  In situ   healing  of extensive excisional full-thickness wounds.  Sci
               bioprinting: Intraoperative implementation of regenerative   Rep, 9: 1856.
               medicine. Trends Biotechnol, 40: 1229–1247.
                                                                  https://doi.org/10.1038/s41598-018-38366-w
               https://doi.org/10.1016/j.tibtech.2022.03.009
                                                               29.  Pazhouhnia Z, Beheshtizadeh N, Namini MS, et al., 2022,
            18.  Dias JR, Ribeiro N, Baptista-Silva S,  et al., 2020,  In situ   Portable hand-held bioprinters promote  in situ tissue
               enabling  approaches  for  tissue  regeneration:  Current   regeneration. Bioeng Transl Med, 7: e10307.
               challenges and new developments.  Front Bioeng
               Biotechnol, 8: 85.                                 https://doi.org/10.1002/btm2.10307
               https://doi.org/10.3389/fbioe.2020.00085        30.  Campos DF, Zhang S, Kreimendahl F, et al., 2020, Hand-held
                                                                  bioprinting for de novo vascular formation applicable to
            19.  Ashammakhi N, Ahadian S, Pountos I, et al., 2019, In situ   dental pulp regeneration. Connect Tissue Res, 61: 205–215.
               three-dimensional printing for reparative and regenerative
               therapy. Biomed Microdevices, 21: 42.              https://doi.org/10.1080/03008207.2019.1640217
               https://doi.org/10.1007/s10544-019-0372-2       31.  Osidak EO, Karalkin PA, Osidak MS, et al., 2019, Viscoll
                                                                  collagen solution as a novel bioink for direct 3D bioprinting.
            20.  Wu Y, Ravnic DJ, Ozbolat IT, 2020, Intraoperative   J Mater Sci Mater Med, 30: 31.
               bioprinting: repairing tissues and organs in a surgical
               setting. Trends Biotechnol, 38: 594–605.           https://doi.org/10.1007/s10856-019-6233-y
               https://doi.org/10.1016/j.tibtech.2020.01.004   32.  Shansky YD, Sergeeva NS, Sviridova IK,  et al., 2019,
                                                                  Human platelet lysate sustains the osteogenic/adipogenic
            21.  Neng X, Guohong S, Yuling S, et al., 2020, Research progress   differentiation potential of adipose-derived mesenchymal
               of robot technology in in situ 3D bioprinting. Int J Bioprint,   stromal cells and maintains their dna integrity in vitro. Cells
               8: 614.                                            Tissues Organs, 207: 149–164.
               https://doi.org/10.18063/ijb.v8i4.614              https://doi.org/10.1159/000502813
            22.  Choudhury D, Anand S, Naing MW, 2018, The arrival of   33.  Lang S, Loibl M, Herrmann M, 2018, Platelet-rich plasma in
               commercial bioprinters-towards 3D bioprinting revolution!   tissue engineering: Hype and hope. Eur Surg Res, 59: 265–275.
               Int J Bioprint, 4: 139.
                                                                  https://doi.org/10.1159/000492415
               https://doi.org/10.18063/IJB.v4i2.139
                                                               34.  Nuutila K, Samandari M, Endo Y, et al., 2022, In vivo printing
            23.  Wang M, He J, Liu Y, et al., 2015, The trend towards in vivo   of growth factor-eluting adhesive scaffolds improves wound
               bioprinting. Int J Bioprint, 1: 15–26.             healing. Bioact Mater, 8: 296–308.
               https://doi.org/10.18063/IJB.2015.01.001           https://doi.org/10.1016/j.bioactmat.2021.06.030
            24.  Ding H, Chang RC, 2018, Simulating image-guided in situ   35.  Montesano R, Orci L, 1988, Transforming growth factor
               bioprinting of a skin graft onto a phantom burn wound bed.   beta stimulates collagen-matrix contraction by fibroblasts:
               Addit Manuf, 22: 708–719.                          Implications for wound healing. Proc Natl Acad Sci U S A,
               https://doi.org/10.1016/j.addma.2018.06.022        85(13):4894-7.
            25.  Fortunato GM, Rossi G, Bonatti AF,  et al., 2021, Robotic      https://doi.org/10.1073/pnas.85.13.4894
               platform and path planning algorithm for in situ bioprinting.   36.  Popp CM, Miller WC, Eide CR,  et al., 2022, Future
               Bioprinting, 22: e00139.                           applications of 3D bioprinting: A  promising technology
               https://doi.org/10.1016/j.bprint.2021.e00139       for treating recessive dystrophic epidermolysis bullosa. Exp
                                                                  Dermatol, 31: 384–392.
            26.  Di Bella C, Duchi S, O’Connell CD,  et al., 2018,  In situ
               handheld three-dimensional bioprinting for cartilage      https://doi.org/10.1111/exd.14484



            Volume 9 Issue 2 (2023)                        393                      https://doi.org/10.18063/ijb.v9i2.675
   396   397   398   399   400   401   402   403   404   405   406