Page 401 - IJB-9-2
P. 401
International Journal of Bioprinting In situ 3D bioprinter for skin wound healing
15. Martin I, Smith T, Wendt D, 2009, Bioreactor-based regeneration. J Tissue Eng Regen Med, 12: 611–621.
roadmap for the translation of tissue engineering strategies https://doi.org/10.1002/term.2476
into clinical products. Trends Biotechnol, 27: 495–502.
27. Hakimi N, Cheng R, Leng L, et al., 2018, Handheld skin
https://doi.org/10.1016/j.tibtech.2009.06.002
printer: In situ formation of planar biomaterials and tissues.
16. Singh S, Choudhury D, Yu F, et al., 2019, In situ bioprinting- Lab Chip, 18: 1440–1451.
bioprinting from benchside to bedside? Acta Biomater, https://doi.org/10.1039/c7lc01236e
101: 14–25.
28. Albanna M, Binder KW, Murphy SV, et al., 2019, In situ
https://doi.org/10.1016/j.actbio.2019.08.045
bioprinting of autologous skin cells accelerates wound
17. Samandari M, Mostafavi A, Quint J, et al., 2022, In situ healing of extensive excisional full-thickness wounds. Sci
bioprinting: Intraoperative implementation of regenerative Rep, 9: 1856.
medicine. Trends Biotechnol, 40: 1229–1247.
https://doi.org/10.1038/s41598-018-38366-w
https://doi.org/10.1016/j.tibtech.2022.03.009
29. Pazhouhnia Z, Beheshtizadeh N, Namini MS, et al., 2022,
18. Dias JR, Ribeiro N, Baptista-Silva S, et al., 2020, In situ Portable hand-held bioprinters promote in situ tissue
enabling approaches for tissue regeneration: Current regeneration. Bioeng Transl Med, 7: e10307.
challenges and new developments. Front Bioeng
Biotechnol, 8: 85. https://doi.org/10.1002/btm2.10307
https://doi.org/10.3389/fbioe.2020.00085 30. Campos DF, Zhang S, Kreimendahl F, et al., 2020, Hand-held
bioprinting for de novo vascular formation applicable to
19. Ashammakhi N, Ahadian S, Pountos I, et al., 2019, In situ dental pulp regeneration. Connect Tissue Res, 61: 205–215.
three-dimensional printing for reparative and regenerative
therapy. Biomed Microdevices, 21: 42. https://doi.org/10.1080/03008207.2019.1640217
https://doi.org/10.1007/s10544-019-0372-2 31. Osidak EO, Karalkin PA, Osidak MS, et al., 2019, Viscoll
collagen solution as a novel bioink for direct 3D bioprinting.
20. Wu Y, Ravnic DJ, Ozbolat IT, 2020, Intraoperative J Mater Sci Mater Med, 30: 31.
bioprinting: repairing tissues and organs in a surgical
setting. Trends Biotechnol, 38: 594–605. https://doi.org/10.1007/s10856-019-6233-y
https://doi.org/10.1016/j.tibtech.2020.01.004 32. Shansky YD, Sergeeva NS, Sviridova IK, et al., 2019,
Human platelet lysate sustains the osteogenic/adipogenic
21. Neng X, Guohong S, Yuling S, et al., 2020, Research progress differentiation potential of adipose-derived mesenchymal
of robot technology in in situ 3D bioprinting. Int J Bioprint, stromal cells and maintains their dna integrity in vitro. Cells
8: 614. Tissues Organs, 207: 149–164.
https://doi.org/10.18063/ijb.v8i4.614 https://doi.org/10.1159/000502813
22. Choudhury D, Anand S, Naing MW, 2018, The arrival of 33. Lang S, Loibl M, Herrmann M, 2018, Platelet-rich plasma in
commercial bioprinters-towards 3D bioprinting revolution! tissue engineering: Hype and hope. Eur Surg Res, 59: 265–275.
Int J Bioprint, 4: 139.
https://doi.org/10.1159/000492415
https://doi.org/10.18063/IJB.v4i2.139
34. Nuutila K, Samandari M, Endo Y, et al., 2022, In vivo printing
23. Wang M, He J, Liu Y, et al., 2015, The trend towards in vivo of growth factor-eluting adhesive scaffolds improves wound
bioprinting. Int J Bioprint, 1: 15–26. healing. Bioact Mater, 8: 296–308.
https://doi.org/10.18063/IJB.2015.01.001 https://doi.org/10.1016/j.bioactmat.2021.06.030
24. Ding H, Chang RC, 2018, Simulating image-guided in situ 35. Montesano R, Orci L, 1988, Transforming growth factor
bioprinting of a skin graft onto a phantom burn wound bed. beta stimulates collagen-matrix contraction by fibroblasts:
Addit Manuf, 22: 708–719. Implications for wound healing. Proc Natl Acad Sci U S A,
https://doi.org/10.1016/j.addma.2018.06.022 85(13):4894-7.
25. Fortunato GM, Rossi G, Bonatti AF, et al., 2021, Robotic https://doi.org/10.1073/pnas.85.13.4894
platform and path planning algorithm for in situ bioprinting. 36. Popp CM, Miller WC, Eide CR, et al., 2022, Future
Bioprinting, 22: e00139. applications of 3D bioprinting: A promising technology
https://doi.org/10.1016/j.bprint.2021.e00139 for treating recessive dystrophic epidermolysis bullosa. Exp
Dermatol, 31: 384–392.
26. Di Bella C, Duchi S, O’Connell CD, et al., 2018, In situ
handheld three-dimensional bioprinting for cartilage https://doi.org/10.1111/exd.14484
Volume 9 Issue 2 (2023) 393 https://doi.org/10.18063/ijb.v9i2.675

