Page 45 - IJB-9-2
        P. 45
     International Journal of Bioprinting                          Scaffolds printed with light sheet stereolithography
               Adv Wound Care, 10: 641–661.                       multiscale porous adhesive (bio)inks facilitate scaffold
                                                                  integration. Appl Phys Rev, 8: 041415.
               https://doi.org/10.1089/wound.2018.0937
                                                                  https://doi.org/10.1063/5.0062823
            23.  Verbelen J, Hoeksema H, Heyneman A, et al., 2014, Aquacel®
                                    tm
               Ag dressing versus Acticoat  dressing in partial thickness   34.  Jiang T,  Munguia-Lopez JG, Flores-Torres S,  et al., 2019,
               burns: A  prospective, randomized, controlled study in   Extrusion bioprinting of soft materials: An emerging
               100 patients. Part 1: Burn wound healing. Burns, 40: 416–427.   technique for biological model fabrication Appl Phys Rev,
                                                                  6: 011310.
               https://doi.org/10.1016/j.burns.2013.07.008
                                                                  https://doi.org/10.1063/1.5059393
            24.  Selig  HF,  Lumenta  DB,  Giretzlehner  M,  et al.,  2012,  The
               properties of an “ideal” burn wound dressing what do we   35.  Li  X,  Liu  B,  Pei  B,  et al.,  2020,  Inkjet  Bioprinting  of
               need in daily clinical practice? Results of a worldwide online   biomaterials. Chem Rev, 120: 10793–10833.
               survey among burn care specialists. Burns, 38: 960–966.      https://doi.org/10.1021/acs.chemrev.0c00008
               https://doi.org/10.1016/j.burns.2012.04.007     36.  Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-
            25.  Yu H, Chen X, Cai J,  et al., 2019, Novel porous three-  based bioprinting—process, materials, applications and
               dimensional  nanofibrous  scaffolds  for  accelerating  wound   regulatory challenges. Biofabrication, 12: 022001.
               healing. Chem Eng J, 369: 253–262.                 https://doi.org/10.1088/1758-5090/ab6034
               https://doi.org/10.1016/j.cej.2019.03.091       37.  Ge  Q, Li  Z, Wang  Z,  et al.,  2020, Projection micro
            26.  Shyna S, Shanti Krishna A, Nair PD,  et al., 2020, A   stereolithography based 3D printing and its applications. Int
               nonadherent chitosan-polyvinyl alcohol absorbent wound   J Extrem Manuf, 2: 022004.
               dressing prepared via controlled freeze-dry technology. Int      https://doi.org/10.1088/2631-7990/ab8d9a.
               J Biol Macromol, 150: 129–140.
                                                               38.  Lee MP, Cooper G.J.T, Hinkley T, et al., 2015, Development
               https://doi.org/10.1016/j.ijbiomac.2020.01.292     of a 3D printer using scanning projection stereolithography.
            27.  Boekema B.K.H.,  Vlig  M, Olde  Damink  L,  et al., 2014,   Sci Rep, 5: 9875.
               Ulrich,  effect  of  pore  size  and  cross-linking  of  a  novel      https://doi.org/10.1038/srep09875
               collagen-elastin dermal substitute on wound healing.
               J Mater Sci Mater Med, 25: 423–433.             39.  Ahn D, Stevens LM, Zhou K, et al., 2020, Rapid high-resolution
                                                                  visible light 3D printing. ACS Cent Sci, 6: 1555–1563.
               https://doi.org/10.1007/s10856-013-5075-2
                                                                  https://doi.org/10.1021/acscentsci.0c00929
            28.  Ng S, 2020, Freeze‐dried wafers for wound healing. In: Ther.
               Dressings Wound Health. Cupertino, Hoboken: Apple,   40.  Sun  C, Fang  N,  Wu DM,  et al.,  2005, Projection  micro-
               Wiley, pp137–155.                                  stereolithography using digital micro-mirror dynamic
                                                                  mask. Sens Actuators A Phys, 121: 113–120.
               https://doi.org/10.1002/9781119433316.ch7
                                                                  https://doi.org/10.1016/j.sna.2004.12.011
            29.  Dias JR, Granja PL, Bártolo PJ, 2016, Advances in electrospun
               skin substitutes. Prog Mater Sci, 84: 314–334.   41.  Behroodi E, Latifi H, Najafi F, 2019, A compact LED-
                                                                  based projection microstereolithography for producing 3D
               https://doi.org/10.1016/j.pmatsci.2016.09.006      microstructures. Sci Rep, 9: 19692.
            30.  Cui T, Yu J, Li Q,  et al., 2020, Large‐scale fabrication of      https://doi.org/10.1038/s41598-019-56044-3
               robust artificial skins from a biodegradable sealant‐loaded
               nanofiber  scaffold  to  skin  tissue  via  microfluidic  blow‐  42.  Liu Y, Nolte DD, Pyrak-Nolte LJ, 2010, Large-format
               spinning. Adv Mater, 32: 2000982.                  fabrication by two-photon polymerization in SU-8.  Appl
                                                                  Phys A, 100: 181–191.
               https://doi.org/10.1002/adma.202000982
                                                                  https://doi.org/10.1007/s00339-010-5735-8
            31.  Pereira RF, Barrias CC, Granja PL, et al., 2013, Advanced
               biofabrication strategies for skin regeneration and repair.   43.  Gong H, Bickham BP, Woolley AT,  et  al., 2017, Custom
               Nanomedicine, 8: 603–621.                          3D printer and resin for 18 μm × 20 μm microfluidic flow
                                                                  channels. Lab Chip, 17: 2899–2909.
               https://doi.org/10.2217/nnm.13.50
                                                                  https://doi.org/10.1039/C7LC00644F
            32.  Chartrain  NA, Williams  CB, Whittington  AR,  2018,
               A review on fabricating tissue scaffolds using vat   44.  Ricci  D,  Nava  M,  Zandrini  T,  et al.,  2017,  Scaling-Up
                                                                  Techniques for the nanofabrication of cell culture substrates
               photopolymerization. Acta Biomate, 74: 90–111.
                                                                  via two-photon polymerization for industrial-scale
               https://doi.org/10.1016/j.actbio.2018.05.010       expansion of stem cells. Materials (Basel), 10: 66.
            33.  Mostafavi A, Samandari M, Karvar M, et al., 2021, Colloidal      https://doi.org/10.3390/ma10010066
            Volume 9 Issue 2 (2023)                         37                      https://doi.org/10.18063/ijb.v9i2.650
     	
