Page 45 - IJB-9-2
P. 45
International Journal of Bioprinting Scaffolds printed with light sheet stereolithography
Adv Wound Care, 10: 641–661. multiscale porous adhesive (bio)inks facilitate scaffold
integration. Appl Phys Rev, 8: 041415.
https://doi.org/10.1089/wound.2018.0937
https://doi.org/10.1063/5.0062823
23. Verbelen J, Hoeksema H, Heyneman A, et al., 2014, Aquacel®
tm
Ag dressing versus Acticoat dressing in partial thickness 34. Jiang T, Munguia-Lopez JG, Flores-Torres S, et al., 2019,
burns: A prospective, randomized, controlled study in Extrusion bioprinting of soft materials: An emerging
100 patients. Part 1: Burn wound healing. Burns, 40: 416–427. technique for biological model fabrication Appl Phys Rev,
6: 011310.
https://doi.org/10.1016/j.burns.2013.07.008
https://doi.org/10.1063/1.5059393
24. Selig HF, Lumenta DB, Giretzlehner M, et al., 2012, The
properties of an “ideal” burn wound dressing what do we 35. Li X, Liu B, Pei B, et al., 2020, Inkjet Bioprinting of
need in daily clinical practice? Results of a worldwide online biomaterials. Chem Rev, 120: 10793–10833.
survey among burn care specialists. Burns, 38: 960–966. https://doi.org/10.1021/acs.chemrev.0c00008
https://doi.org/10.1016/j.burns.2012.04.007 36. Ng WL, Lee JM, Zhou M, et al., 2020, Vat polymerization-
25. Yu H, Chen X, Cai J, et al., 2019, Novel porous three- based bioprinting—process, materials, applications and
dimensional nanofibrous scaffolds for accelerating wound regulatory challenges. Biofabrication, 12: 022001.
healing. Chem Eng J, 369: 253–262. https://doi.org/10.1088/1758-5090/ab6034
https://doi.org/10.1016/j.cej.2019.03.091 37. Ge Q, Li Z, Wang Z, et al., 2020, Projection micro
26. Shyna S, Shanti Krishna A, Nair PD, et al., 2020, A stereolithography based 3D printing and its applications. Int
nonadherent chitosan-polyvinyl alcohol absorbent wound J Extrem Manuf, 2: 022004.
dressing prepared via controlled freeze-dry technology. Int https://doi.org/10.1088/2631-7990/ab8d9a.
J Biol Macromol, 150: 129–140.
38. Lee MP, Cooper G.J.T, Hinkley T, et al., 2015, Development
https://doi.org/10.1016/j.ijbiomac.2020.01.292 of a 3D printer using scanning projection stereolithography.
27. Boekema B.K.H., Vlig M, Olde Damink L, et al., 2014, Sci Rep, 5: 9875.
Ulrich, effect of pore size and cross-linking of a novel https://doi.org/10.1038/srep09875
collagen-elastin dermal substitute on wound healing.
J Mater Sci Mater Med, 25: 423–433. 39. Ahn D, Stevens LM, Zhou K, et al., 2020, Rapid high-resolution
visible light 3D printing. ACS Cent Sci, 6: 1555–1563.
https://doi.org/10.1007/s10856-013-5075-2
https://doi.org/10.1021/acscentsci.0c00929
28. Ng S, 2020, Freeze‐dried wafers for wound healing. In: Ther.
Dressings Wound Health. Cupertino, Hoboken: Apple, 40. Sun C, Fang N, Wu DM, et al., 2005, Projection micro-
Wiley, pp137–155. stereolithography using digital micro-mirror dynamic
mask. Sens Actuators A Phys, 121: 113–120.
https://doi.org/10.1002/9781119433316.ch7
https://doi.org/10.1016/j.sna.2004.12.011
29. Dias JR, Granja PL, Bártolo PJ, 2016, Advances in electrospun
skin substitutes. Prog Mater Sci, 84: 314–334. 41. Behroodi E, Latifi H, Najafi F, 2019, A compact LED-
based projection microstereolithography for producing 3D
https://doi.org/10.1016/j.pmatsci.2016.09.006 microstructures. Sci Rep, 9: 19692.
30. Cui T, Yu J, Li Q, et al., 2020, Large‐scale fabrication of https://doi.org/10.1038/s41598-019-56044-3
robust artificial skins from a biodegradable sealant‐loaded
nanofiber scaffold to skin tissue via microfluidic blow‐ 42. Liu Y, Nolte DD, Pyrak-Nolte LJ, 2010, Large-format
spinning. Adv Mater, 32: 2000982. fabrication by two-photon polymerization in SU-8. Appl
Phys A, 100: 181–191.
https://doi.org/10.1002/adma.202000982
https://doi.org/10.1007/s00339-010-5735-8
31. Pereira RF, Barrias CC, Granja PL, et al., 2013, Advanced
biofabrication strategies for skin regeneration and repair. 43. Gong H, Bickham BP, Woolley AT, et al., 2017, Custom
Nanomedicine, 8: 603–621. 3D printer and resin for 18 μm × 20 μm microfluidic flow
channels. Lab Chip, 17: 2899–2909.
https://doi.org/10.2217/nnm.13.50
https://doi.org/10.1039/C7LC00644F
32. Chartrain NA, Williams CB, Whittington AR, 2018,
A review on fabricating tissue scaffolds using vat 44. Ricci D, Nava M, Zandrini T, et al., 2017, Scaling-Up
Techniques for the nanofabrication of cell culture substrates
photopolymerization. Acta Biomate, 74: 90–111.
via two-photon polymerization for industrial-scale
https://doi.org/10.1016/j.actbio.2018.05.010 expansion of stem cells. Materials (Basel), 10: 66.
33. Mostafavi A, Samandari M, Karvar M, et al., 2021, Colloidal https://doi.org/10.3390/ma10010066
Volume 9 Issue 2 (2023) 37 https://doi.org/10.18063/ijb.v9i2.650

