Page 180 - IJB-9-3
P. 180

International Journal of Bioprinting                  Flow performance of porous implants with different geometry



            27.  Ali D, Sen S, 2018, Permeability and fluid flow-induced wall   stacks of commercial biomaterials usable for bone grafting.
               shear stress of bone tissue scaffolds: Computational fluid   Micron, 133:102861.
               dynamic analysis using Newtonian and non-Newtonian
               blood flow models. Comput Biol Med, 99:201–208.    https://doi.org/10.1016/j.micron.2020.102861
               https://doi.org/10.1016/j.compbiomed.2018.06.017  36.  Ouyang P, Dong H, He X,  et al., 2019, Hydromechanical
                                                                  mechanism behind the effect of pore size of porous titanium
            28.  Zhao  F,  Melke  J,  Ito  K,  et al.,  2019,  A  multiscale   scaffolds on osteoblast response and bone ingrowth. Mater
               computational fluid dynamics approach to simulate the   Design, 183:108151.
               micro-fluidic environment within a tissue engineering
               scaffold with highly irregular pore geometry. Biomech Model   https://doi.org/10.1016/j.matdes.2019.108151
               Mechanobiol, 18:1965–1977.                      37.  Singh SP, Shukla M, Srivastava RK, 2018, Lattice modeling
               https://doi.org/10.1007/s10237-019-01188-4         and CFD simulation for prediction of permeability in porous
                                                                  scaffolds. Mater Today Proc, 5:18879–18886.
            29.  Poon C, 2022, Measuring the density and viscosity of culture
               media for optimized computational fluid dynamics analysis   https://doi.org/10.1016/j.matpr.2018.06.236
               of in vitro devices. J Mech Behav Biomed Mater, 126:105024.
                                                               38.  Du Y, Liang H, Xie D, et al., 2019, Finite element analysis
               https://doi.org/10.1016/j.jmbbm.2021.105024        of  mechanical  behavior,  permeability  of  irregular  porous
            30.  Baroud G, Falk R, Crookshank M, et al., 2004, Experimental   scaffolds and lattice-based porous scaffolds.  Mater Res
               and theoretical investigation of directional permeability of   Express, 6:105407.
               human vertebral cancellous bone for cement infiltration. J   https://doi.org/10.1088/2053-1591/ab3ac1
               Biomech, 37:189–196.
                                                               39.  Yu G, Li Z, Li S, et al., 2020, The select of internal architecture
               https://doi.org/10.1016/S0021-9290(03)00246-X      for  porous  Ti  alloy  scaffold:  A  compromise  between
            31.  Nauman EA, Fong KE, Keaveny TM, 1999, Dependence of   mechanical properties and permeability.  Mater Design,
               intertrabecular permeability on flow direction and anatomic   192:108754.
               site. Ann Biomed Eng, 27:517–524.                  https://doi.org/10.1016/j.matdes.2020.108754
               https://doi.org/10.1114/1.195                   40.  Timercan A, Sheremetyev V, Brailovski V, 2021, Mechanical
            32.  Kohles  SS,  Roberts  JB,  Upton  ML,  et al.,  2001,  Direct   properties and fluid  permeability of gyroid  and  diamond
               perfusion measurements of cancellous bone anisotropic   lattice  structures  for  intervertebral  devices:  Functional
               permeability. J Biomech, 34:1197–1202.             requirements  and  comparative analysis.  Sci Technol Adv
                                                                  Mater, 22:285–300.
               https://doi.org/10.1016/S0021-9290(01)00082-3
                                                                  https://doi.org/10.1080/14686996.2021.1907222
            33.  Sander EA, Shimko DA, Dee KC, et al., 2003, Examination
               of continuum and micro-structural properties of human   41.  Foroughi AH,  Razavi  MJ,  2022,  Multi-objective  shape
               vertebral cancellous bone using combined cellular solid   optimization of bone scaffolds: Enhancement of
               models. Biomech Model Mechanobiol, 2:97–107.       mechanical properties and permeability.  Acta Biomater,
               https://doi.org/10.1007/s10237-003-0031-6          146:317–340.
            34.  Syahrom A, Abdul Kadir MR, Abdullah J,  et al., 2013,   https://doi.org/10.1016/j.actbio.2022.04.051
               Permeability studies of artificial and natural cancellous bone   42.  Foroughi AH, Razavi MJ, 2022, Shape optimization of
               structures. Med Eng Phys, 35:792–799.              orthopedic porous scaffolds to enhance mechanical
               https://doi.org/10.1016/j.medengphy.2012.08.011    performance. J Mech Behav Biomed Mater, 128:105098.
            35.  Chappard D, Kün-Darbois J-D, Guillaume B, 2020,   https://doi.org/10.1016/j.jmbbm.2022.105098
               Computational fluid dynamics simulation from microCT

















            Volume 9 Issue 3 (2023)                        172                         https://doi.org/10.18063/ijb.700
   175   176   177   178   179   180   181   182   183   184   185