Page 263 - IJB-9-3
P. 263

International Journal of Bioprinting                               Multi-material bioprinting with OCT imaging



            21.  Busra TD, Fatma BE, Tugba A, et al., 2019, 3D bio-printing   31.  Gerdes  S,  Mostafavi  A,  Ramesh  S,  et al.,  2020,  Process-
               of levan/polycaprolactone/gelatin blends for bone tissue   structure-quality  relationships  of  3D  printed  PCL-
               engineering: Characterization of the cellular behavior.   hydroxyapatite scaffolds. Tissue Eng Part A, 26(5-6):279–291.
               Polym Paint Colour, 119:426–437.
                                                                  https://doi.org/10.1089/ten.TEA.2019.0237
               https://doi.org/10.1016/j.eurpolymj.2019.08.015
                                                               32.  Joshua WT, Daniel JS, Brian C, et al., 2022, In situ volumetric
            22.  Chen Y, Xiong X, Liu X, et al., 2020, Bioprinting of shear-  imaging and analysis of FRESH 3D bioprinted constructs
               thinning hybrid bioinks with excellent bioactivity derived   using optical coherence tomography.  Biofabrication,
               from gellan/alginate and thixotropic magnesium phosphate-  15(1):104102.
               based gels. J Mater Chem B, 8:5500–5514.
                                                                  https://doi.org/10.1088/1758-5090/ac975e
               https://doi.org/10.1039/D0TB00060D
                                                               33.  Yang S, Wang L, Chen Q,  et al., 2021, In situ process
            23.  Shao Y, Han R, Quan X, et al., 2021, Study on ink flow of   monitoring and  automated  multi-parameter  evaluation
               silicone rubber for direct ink writing. J Appl Polym Sci,   using  optical  coherence  tomography  during  extrusion-
               138(33):50819.                                     based bioprinting. Addit Manuf, 47:102251.
               https://doi.org/10.1002/app.50819                  https://doi.org/10.1016/j.addma.2021.102251
            24.  Peki A, Ekici B, 2021, Experimental and statistical analysis of   34.  Yang S, Chen Q, Wang L, et al., 2022, In situ defect detection
               robotic 3D printing process parameters for continuous fiber   and feedback control with three-dimensional extrusion-
               reinforced composites. Int J Compos Mater, 55(19):2645–2655.  based bioprinter-associated optical coherence tomography.
                                                                  Int J Bioprint, 9(1):642.
               https://doi.org/10.1177/0021998321996425
                                                                  https://doi.org/10.18063/ijb.v9i1.624
            25.  Zhou L, Gao Q, Fu J, 2019, Multi-material 3D printing
               of highly stretchable silicone elastomer.  ACS  Appl  Mater   35.  Geng P, Zhao J, Wu W, et al., 2019, Effects of extrusion speed
               Interfaces, 11(26):23573–23583.                    and printing speed on the 3D printing stability of extruded
                                                                  PEEK filament. J Manuf Process, 37:266–273.
               https://doi.org/10.1021/acsami.9b04873
                                                                  https://doi.org/10.1016/j.jmapro.2018.11.023
            26.  Nicholas  B,  Chen  XB,  2022,  Review  of  extrusion-based
               multi-material  bioprinting  processes—ScienceDirect.  36.  Jeffrey P, Tian X, Albert S, 2018, Measurement and modeling
               Bioprinting, 25:e00189.                            of forces in extrusion-based additive manufacturing of
               https://doi.org/10.1016/j.bprint.2021.e00189       flexible silicone elastomer with thin wall structures. J Manuf
                                                                  Sci Eng, 140(9):09100.
            27.  Hoelzle DJ, Alleyne AG, Johnson A, 2008, Iterative learning
               control  for  robotic  deposition  using  machine  vision.   https://doi.org/10.1115/1.4040350
               American Control Conference, 2008.              37.  Liu C, Liu J, Yang C, et al., 2022, Computer vision-aided 2D
               https://doi.org/10.1109/ACC.2008.4587211           error assessment and correction for helix bioprinting. Int J
                                                                  Bioprint, 8(2):547.
            28.  Armstrong AA, Norato J, Andrew GA, et al., 2020, Direct
               process feedback in extrusion-based 3D bioprinting.   https://doi.org/10.18063/ijb.v8i2.547
               Biofabrication, 12(1):015017.                   38.  Braeden W, Barry JD, 2017, Parameter optimization for 3D
                                                                  bioprinting of hydrogels. Bioprinting, 8:8–12.
               https://doi.org/10.1088/1758-5090/ab4d97
                                                                  https://doi.org/10.1016/j.bprint.2017.09.001
            29.  Armstrong AA, Alleyne AG, Johnson A, 2020, 1D and
               2D error assessment and correction for extrusion-based   39.  Wei LN, Alvin C, Yew SO, et al., 2022, Deep learning for
               bioprinting using process sensing and control strategies.   fabrication and maturation of 3D bioprinted tissues and
               Biofabrication, 12(4):045023.                      organs. Virtual Phys Prototyp, 15(11):1–19.
               https://doi.org/10.1088/1758-5090/aba8ee           https://doi.org/10.1080/17452759.2020.1771741
            30.  Almela T, Brook IM, Khoshroo K, et al., 2017, Simulation of   40.  Bonatti AF, Vozzi G, Chua CK, et al., 2022, A deep learning
               cortico-cancellous bone structure by 3D printing of bilayer   quality control loop of the extrusion based bioprinting
               calcium phosphate-based scaffolds. Bioprinting, 6:1–7.  process. Int J Bioprint, 8(4):620.
               https://doi.org/10.1016/j.bprint.2017.04.001       https://doi.org/10.18063/ijb.v8i4.620










            Volume 9 Issue 3 (2023)                        255                          https://doi.org/10.18063/ijb.707
   258   259   260   261   262   263   264   265   266   267   268