Page 336 - IJB-9-3
P. 336

International Journal of Bioprinting                New fibrillar collagen for 3D printing and bioprinting



            25.  Stuart K, Panitch A, 2008, Influence of chondroitin sulfate   on induced shear stress and its effect on cell viability.
               on collagen gel structure and mechanical properties at   Bioprinting, 20:e00093.
               physiologically relevant levels. Biopolymers, 89(10):841–851.
                                                                  https://doi.org/10.1016/J.BPRINT.2020.E00093
               https://doi.org/10.1002/BIP.21024
                                                               36.  Malekpour A, Chen X, 2022, Printability and cell viability
            26.  Morozova S, Muthukumar M, 2018, Electrostatic effects in   in extrusion-based bioprinting from experimental,
               collagen fibril formation. J Chem Phys, 149(16):163333.  computational, and machine learning views.  J Funct
               https://doi.org/10.1063/1.5036526                  Biomater, 13(2):40.
            27.  Li Y, Qiao C, Shi L, et al., 2014, Viscosity of collagen solutions:   https://doi.org/10.3390/JFB13020040
               Influence of concentration, temperature, adsorption, and   37.  Cunha JP, 2022, Tham (tromethamine injection).
               role of intermolecular interactions. J Macromollecular Sci B,
               53(5):893–901.                                     https://www.rxlist.com/tham-drug.htm (Accessed July 14,
                                                                  2022).
               https://doi.org/10.1080/00222348.2013.852059
                                                               38.  Rhee S, Puetzer JL, Mason BN, et al., 2016, 3D bioprinting
            28.  Osidak EO, Karalkin PA, Osidak MS, et al., 2019, Viscoll   of spatially heterogeneous collagen constructs for cartilage
               collagen solution as a novel bioink for direct 3D bioprinting.   tissue engineering. ACS Biomater Sci Eng, 2(10):1800–1805.
               J Mater Sci Mater Med, 30(3):1–12.
                                                                  https://doi.org/10.1021/ACSBIOMATERIALS.6B00288/
               https://doi.org/10.1007/S10856-019-6233-Y/FIGURES/6  ASSET/IMAGES/LARGE/AB-2016-00288V_0007.JPEG
            29.  Duan L, Li J, Li C,  et al., 2013, Effects of NaCl on the   39.  Diegelmann RF, Cohen IK, McCoy BJ, 1979, Growth
               rheological behavior of collagen solution.  Korea-Australia   kinetics and collagen synthesis of normal skin, normal scar
               Rheol J, 25(3):137–144.                            and keloid fibroblasts in vitro. J Cell Physiol, 98(2):341–346.
               https://doi.org/10.1007/S13367-013-0014-9          https://doi.org/10.1002/JCP.1040980210
            30.  Newman S, Cloıp M, Allain C, et al., 1997, Viscosity and   40.  Ueno H, Nakamura F, Murakami M, et al., 2001, Evaluation
               elasticity during relevance to matrix-driven translocation.   effects of chitosan for the extracellular matrix production
               Biopolymers, 41:337–347.                           by fibroblasts and the growth factors production by
                                                                  macrophages. Biomaterials, 22(15):2125–2130.
               https://doi.org/10.1002/(SICI)1097-0282(199703)41:3
                                                                  https://doi.org/10.1016/S0142-9612(00)00401-4
            31.  Shin YJ, Shafranek RT, Tsui JH, et al., 2021, 3D bioprinting
               of mechanically tuned bioinks derived from cardiac   41.  Freundlich B, Bomalaski JS, Neilson E,  et al., 1986,
               decellularized extracellular matrix. Acta Biomater, 119:75–88.  Regulation of fibroblast proliferation and collagen synthesis
                                                                  by cytokines. Immunol Today, 7(10):303–307.
               https://doi.org/10.1016/j.actbio.2020.11.006
                                                                  https://doi.org/10.1016/0167-5699(86)90067-8
            32.  Gao T, Gillispie GJ, Copus JS,  et al., 2018, Optimization
               of  gelatin-alginate  composite  bioink  printability  42.  Goldberg B, Green H, 1964, An analysis of collagen secretion
               using  rheological  parameters:  A  systematic  approach.   by established mouse fibroblast lines. J Cell Biol, 22:227–258.
               Biofabrication, 10(3):1–9.                         Accessed: May 19, 2022. [Online]. Available:
                                                                  http://rupress.org/jcb/article-pdf/22/1/227/1401992/227.pdf
               https://doi.org/10.1088/1758-5090/AACDC7
                                                               43.  Kosir MA, Quinn CCV, Wang W,  et  al., 2000, Matrix
            33.  Lewis JL, Johnson SL, Oegema TR, 2004, Interfibrillar
               collagen bonding exists in matrix produced by chondrocytes   glycosaminoglycans in the growth phase of fibroblasts: More
                                                                  of the story in wound healing. J Surg Res, 92(1):45–52.
               in culture: Evidence by electron microscopy.  Tissue
               Engineering.                                       https://doi.org/10.1006/JSRE.2000.5840
               https://home.liebertpub.com/ten, 8(6):989–995.  44.  Gold  KA,  Saha  B,  Rajeeva  Pandian,  NL,  et al.,  2021,  3D
                                                                  bioprinted multicellular vascular models.  Adv Healthc
               https://doi.org/10.1089/107632702320934083         Mater, 2101141:1–14.
            34.  Oechsle AM, Häupler M, Gibis M, et al., 2015, Modulation   https://doi.org/10.1002/adhm.202101141
               of the rheological properties and microstructure of collagen
               by addition of co-gelling proteins. Food Hydrocoll, 49:118–  45.  Tian X, Chen X, 2014, Effects of cell density on mechanical
               126 [Online]. Available:                           properties of alginate hydrogel tissue scaffolds. J Biomimetics
                                                                  Biomater Tissue Eng, 19:77–85.
               https://www.sciencedirect.com/science/article/pii/
               S0268005X15001265                                  https://doi.org/10.4028/WWW.SCIENTIFIC.NET/
                                                                  JBBTE.19.77
            35.  Boularaoui S, Al Hussein G, Khan KA,  et al., 2020, An   46.  Buckley CT, Thorpe SD, O’Brien FJ, et al., 2009, The effect
               overview of extrusion-based bioprinting with a focus
                                                                  of concentration, thermal history and cell seeding density

            Volume 9 Issue 3 (2023)                        328                         https://doi.org/10.18063/ijb.712
   331   332   333   334   335   336   337   338   339   340   341