Page 416 - IJB-9-3
P. 416

International Journal of Bioprinting                                     Cellular metamaterial flexure joints


            Availability of data                               12.  Schaedler  TA,  Carter  WB, 2016,  Architected cellular
                                                                  materials. Annu Rev Mater Res, 46: 187–210.
            All relevant data are within the manuscript or
            supplementary files.                                  https://doi.org/10.1146/annurev-matsci-070115-031624
                                                               13.  Surjadi JU, Gao L, Du H,  et al., 2019, Mechanical
            References                                            metamaterials and their engineering applications. Adv Eng
            1.   Machekposhti DF, Tolou N, Herder JL, 2015, A review on   Mater, 21: 1800864.
               compliant joints and rigid-body constant velocity universal      https://doi.org/10.1002/adem.201800864
               joints toward the design of compliant homokinetic
               couplings. J Mech Des, 137: 032301.             14.  Mohammadi A, Tan Y, Choong P,  et al., 2021, Flexible
                                                                  mechanical metamaterials enabling soft tactile sensors with
               https://doi.org/10.1115/1.4029318                  multiple sensitivities at multiple force sensing ranges.  Sci
            2.   Laschi C, Cianchetti M, 2014, Soft robotics: New perspectives   Rep, 11: 24125.
               for robot bodyware and control. Front Bioeng Biotechnol, 2: 3.      https://doi.org/10.1038/s41598-021-03588-y
               https://doi.org/10.3389/fbioe.2014.00003        15.  Kaur M, Kim WS, 2019, Toward a smart compliant robotic
            3.   Rus D, Tolley MT, 2015, Design, fabrication, and control of   gripper equipped with 3D-designed cellular fingers.  Adv
               soft robots. Nature, 521: 467–475.                 Intell Syst, 1: 1900019.
               https://doi.org/10.1038/nature14543                https://doi.org/10.1002/aisy.201900019
            4.   Müller  VC,  Hoffmann  M,  2017,  What  is  morphological   16.  Netzev  M,  Angleraud  A, Pieters  R, 2020,  Soft  Robotic
               computation? On how the body contributes to cognition   Gripper with Compliant Cell Stacks for Industrial
               and control. Artif Life, 23: 1–24.                 Part  Handling. Vol.  5. United States: IEEE Robotics and
                                                                  Automation Letters, p6821–p6828.
               https://doi.org/10.1162/ARTL_a_00219
                                                               17.  Yan J, Xu Z, Shi P, et al., 2022, A human-inspired soft finger
            5.   Mohammadi A, Lavranos J, Zhou H, et al., 2020, A practical   with dual-mode morphing enabled by variable stiffness
               3D-printed soft robotic  prosthetic  hand  with  multi-  mechanism. Soft Robot, 9: 399–411.
               articulating capabilities. PLoS One, 15: e0232766.
                                                               18.  Goswami D, Liu S, Pal A, et al., 2019, 3D-architected soft
               https://doi.org/10.1371/journal.pone.0232766       machines with topologically encoded motion.  Adv Funct
            6.   Odhner LU, Jentoft LP, Claffee MR, et al., 2014, A compliant,   Mater, 29: 1808713.
               underactuated hand for robust manipulation. Int J Robot      https://doi.org/10.1002/adfm.201808713
               Res, 33: 736–752.
                                                               19.  Zhang J, Lu G, You Z, 2020, Large deformation and energy
               https://doi.org/10.1177/0278364913514466           absorption of additively manufactured auxetic materials and
            7.   Shintake J, Cacucciolo V, Floreano D,  et al., 2018, Soft   structures: A review. Compos Part B Eng, 201: 108340.
               robotic grippers. Adv Mater, 30: 1707035.          https://doi.org/10.1016/j.compositesb.2020.108340
               https://doi.org/10.1002/adma.201707035          20.  Manti M, Cacucciolo V, Cianchetti M, 2016, Stiffening in Soft
            8.   Mutlu R, Alici G, Panhuis M, et al., 2016, 3D printed flexure   Robotics: A review of the State of the Art. Vol. 23. United
               hinges for soft monolithic prosthetic fingers.  Soft Robot,   States: IEEE Robotics and Automation Magazine, p93–p106.
               3: 120–133.                                     21.  Christian W, Esquembre F, Barbato L, 2011, Open source
               https://doi.org/10.1089/soro.2016.0026             physics. Science, 334: 1077–1078.
            9.   Giraud FH, Mete M, Paik J, 2022, Flexure variable stiffness      https://doi.org/10.1126/science.1196984
               actuators. Adv Intell Syst, 4: 2100282.         22.  Bicchi A, 2000, Hands for Dexterous Manipulation and
               https://doi.org/10.1002/aisy.202100282             Robust  Grasping:  A  Difficult  Road  Toward Simplicity.
                                                                  Vol. 16. United States: IEEE Transactions on Robotics and
            10.  Arredondo-Soto M, Cuan-Urquizo E, Gómez-Espinosa A,   Automation, p652–p662.
               2021, A review on tailoring stiffness in compliant systems,
               via removing material: Cellular materials and topology   23.  Xavier MS, Tawk CD, Zolfagharian A,  et al., 2022, Soft
               optimization. Appl Sci, 11: 3538.                  Pneumatic Actuators: A  Review of Design, Fabrication,
                                                                  Modeling, Sensing, Control and Applications. United States:
               https://doi.org/10.3390/app11083538
                                                                  IEEE Access.
            11.  Zadpoor AA, 2016, Mechanical meta-materials.  Mater   24.  Sanchez J, Corrales JA, Bouzgarrou BC, et al., 2018, Robotic
               Horiz, 3: 371–381.
                                                                  manipulation and sensing of deformable objects in domestic
               https://doi.org/10.1039/C6MH00065G                 and industrial applications: A  survey. Int J Robot Res,


            Volume 9 Issue 3 (2023)                        408                         https://doi.org/10.18063/ijb.696
   411   412   413   414   415   416   417   418   419   420   421