Page 110 - IJB-9-4
P. 110

International Journal of Bioprinting                                             3D-Printed liver model



            23.  Witowski JS, Coles-Black J, Zuzak TZ,  et al., 2017, 3D   infill densities and patterns.  J Phys Commun, 4(12):
               Printing  in  liver  surgery:  A  systematic  review.  Telemed   125006.
               e-Health, 23(12):943–947.
                                                                  https://doi.org/10.1088/2399-6528/abd1c3
               https://doi.org/10.1089/tmj.2017.0049
                                                               35.  Estermann SJ, Förster-Streffleur S, Hirtler L,  et al., 2021,
            24.  Ratinam  R, Quayle M,  Crock J,  et al., 2019,  Challenges   Comparison of thiel preserved, fresh human, and animal
               in creating dissectible  anatomical 3D prints for surgical   liver tissue in terms of mechanical properties.  Ann
               teaching. J Anat, 234(4):419–437.                  Anat, 236:151717.
               https://doi.org/10.1111/joa.12934                  https://doi.org/10.1016/j.aanat.2021.151717
            25.  Truby RL, Lewis JA, 2016, Printing soft matter in three   36.  Estermann SJ, Pahr DH, Reisinger A, 2020, Hyperelastic and
               dimensions. Nature, 540(7633):371–378.             viscoelastic characterization of hepatic tissue under uniaxial
               https://doi.org/10.1038/nature21003                tension in time and frequency domain. Mech Behav Biomed
                                                                  Mater, 112:104038.
            26.  Ionita CN, Mokin M, Varble N, et al., 2014, Challenges and
               limitations of patient-specific vascular phantom fabrication   https://doi.org/10.1016/j.jmbbm.2020.104038
               using 3D Polyjet printing.  Proc SPIE Int Soc Opt Eng,   37.  Jaksa L, Pahr DH, Kronreif G, et al., 2021, Development of
               9038:90380M.                                       a multi-material 3D printer for functional anatomic models.
                                                                  Int J Bioprint, 7(4).
               https://doi.org/10.1117/12.2042266
                                                                  https://doi.org/10.18063/ijb.v7i4.420
            27.  Maddox MM, Feibus A, Liu J,  et al., 2018, 3D-printed
               soft-tissue physical models of renal malignancies for   38.  Jaksa L,  Pahr  DH,  Kronreif  G,  et al.,  2022,  Calibration
               individualized surgical simulation: A feasibility study.  J   dependencies and accuracy assessment of a silicone rubber
               Robot Surg, 12(1):27–33.                           3D printer. Inventions, 7(35).
               https://doi.org/10.1007/s11701-017-0680-6          https://doi.org/10.3390/inventions7020035
            28.  Saari M, Xia B, Krueger PS,  et al., 2015, Additive   39.  3D-Slicer,
               manufacturing of soft and composite parts from      https://www.slicer.org/, viewed 04.08.2022
               thermoplastic  elastomers.  Proceedings of the  International
               Solid Freeform Fabrication Symposium, Austin, TX.  40.  Autodesk Meshmixer,
            29.  Bakarich SE, Gorkin R, Panhuis M,  et al., 2014, Three-     https://www.meshmixer.com/, viewed 04.08.2022
               dimensional printing fiber reinforced hydrogel composites.   41.  Elkem AMSil Silicones,
               ACS App Mater Interfaces, 6(18):15998–16006.
                                                                  https://www.elkem.com/silicones/brands/amsil/,  viewed
               https://doi.org/10.1021/am503878d                  04.08.2022
            30.  Hardin JO, Ober TJ, Valentine AD, et al., 2015, Microfluidic   42.  Optimal Products GmbH,
               printheads for multimaterial 3D printing of viscoelastic
               inks. Adv Mater, 27(21):3279–3284.                 https://optimal-products.de/silikonoele/, viewed 04.08.2022
               https://doi.org/10.1002/adma.201500222          43.  Smooth-On Silc Pig Paints,
            31.  Jung JW, Lee JS, Cho DW, 2016, Computer-aided multiple-  https://www.smooth-on.com/products/silc-pig/,  viewed
               head 3D printing system for printing of heterogeneous   04.08.2022
               organ/tissue constructs. Sci Rep, 6:21685.      44.  Prusa Research a.s.,
               https://doi.org/10.1038/srep21685                  https://www.prusa3d.com/page/prusaslicer_424/,  viewed
            32.  Liu W, Zhang YS, Heinrich MA,  et al., 2016, Rapid   04.08.2022
               continuous multimaterial extrusion bioprinting.  Adv   45.  ASTM D638-14, viewed August 04, 2022, https://www.astm.
               Mater, 29(3):1604630.                              org/d0638-14.html
               https://doi.org/10.1002/adma.201604630             https://www.astm.org/d0638-14.html, viewed 04.08.2022
            33.  Skylar-Scott MA, Mueller J, Visser CW, et al., 2019, Voxelated   46.  Aryeetey OJ, Frank M, Lorenz A, et al., 2021, A parameter
               soft material via multimaterial multinozzle 3D printing.   reduced adaptive quasi-linear viscoelastic model for soft
               Nature, 575(7782):330–335.                         biological tissue in uniaxial tension.  Mech  Behav  Biomed
               https://doi.org/10.1038/s41586-019-1736-8          Mater, 126:104999.
            34.  Talalwa L, Natour G, Bauer A,  et al., 2020, Radiological   https://doi.org/10.1016/j.jmbbm.2021.104999
               characteristics of a new experimental rubber elastomeric   47.  Frank M, Marx D, Nedelkovski V, et al., 2018, Dehydration
               polymer used in three-dimensional printing with different   of individual bovine trabeculae causes transition from


            Volume 9 Issue 4 (2023)                        102                         https://doi.org/10.18063/ijb.721
   105   106   107   108   109   110   111   112   113   114   115