Page 110 - IJB-9-4
P. 110
International Journal of Bioprinting 3D-Printed liver model
23. Witowski JS, Coles-Black J, Zuzak TZ, et al., 2017, 3D infill densities and patterns. J Phys Commun, 4(12):
Printing in liver surgery: A systematic review. Telemed 125006.
e-Health, 23(12):943–947.
https://doi.org/10.1088/2399-6528/abd1c3
https://doi.org/10.1089/tmj.2017.0049
35. Estermann SJ, Förster-Streffleur S, Hirtler L, et al., 2021,
24. Ratinam R, Quayle M, Crock J, et al., 2019, Challenges Comparison of thiel preserved, fresh human, and animal
in creating dissectible anatomical 3D prints for surgical liver tissue in terms of mechanical properties. Ann
teaching. J Anat, 234(4):419–437. Anat, 236:151717.
https://doi.org/10.1111/joa.12934 https://doi.org/10.1016/j.aanat.2021.151717
25. Truby RL, Lewis JA, 2016, Printing soft matter in three 36. Estermann SJ, Pahr DH, Reisinger A, 2020, Hyperelastic and
dimensions. Nature, 540(7633):371–378. viscoelastic characterization of hepatic tissue under uniaxial
https://doi.org/10.1038/nature21003 tension in time and frequency domain. Mech Behav Biomed
Mater, 112:104038.
26. Ionita CN, Mokin M, Varble N, et al., 2014, Challenges and
limitations of patient-specific vascular phantom fabrication https://doi.org/10.1016/j.jmbbm.2020.104038
using 3D Polyjet printing. Proc SPIE Int Soc Opt Eng, 37. Jaksa L, Pahr DH, Kronreif G, et al., 2021, Development of
9038:90380M. a multi-material 3D printer for functional anatomic models.
Int J Bioprint, 7(4).
https://doi.org/10.1117/12.2042266
https://doi.org/10.18063/ijb.v7i4.420
27. Maddox MM, Feibus A, Liu J, et al., 2018, 3D-printed
soft-tissue physical models of renal malignancies for 38. Jaksa L, Pahr DH, Kronreif G, et al., 2022, Calibration
individualized surgical simulation: A feasibility study. J dependencies and accuracy assessment of a silicone rubber
Robot Surg, 12(1):27–33. 3D printer. Inventions, 7(35).
https://doi.org/10.1007/s11701-017-0680-6 https://doi.org/10.3390/inventions7020035
28. Saari M, Xia B, Krueger PS, et al., 2015, Additive 39. 3D-Slicer,
manufacturing of soft and composite parts from https://www.slicer.org/, viewed 04.08.2022
thermoplastic elastomers. Proceedings of the International
Solid Freeform Fabrication Symposium, Austin, TX. 40. Autodesk Meshmixer,
29. Bakarich SE, Gorkin R, Panhuis M, et al., 2014, Three- https://www.meshmixer.com/, viewed 04.08.2022
dimensional printing fiber reinforced hydrogel composites. 41. Elkem AMSil Silicones,
ACS App Mater Interfaces, 6(18):15998–16006.
https://www.elkem.com/silicones/brands/amsil/, viewed
https://doi.org/10.1021/am503878d 04.08.2022
30. Hardin JO, Ober TJ, Valentine AD, et al., 2015, Microfluidic 42. Optimal Products GmbH,
printheads for multimaterial 3D printing of viscoelastic
inks. Adv Mater, 27(21):3279–3284. https://optimal-products.de/silikonoele/, viewed 04.08.2022
https://doi.org/10.1002/adma.201500222 43. Smooth-On Silc Pig Paints,
31. Jung JW, Lee JS, Cho DW, 2016, Computer-aided multiple- https://www.smooth-on.com/products/silc-pig/, viewed
head 3D printing system for printing of heterogeneous 04.08.2022
organ/tissue constructs. Sci Rep, 6:21685. 44. Prusa Research a.s.,
https://doi.org/10.1038/srep21685 https://www.prusa3d.com/page/prusaslicer_424/, viewed
32. Liu W, Zhang YS, Heinrich MA, et al., 2016, Rapid 04.08.2022
continuous multimaterial extrusion bioprinting. Adv 45. ASTM D638-14, viewed August 04, 2022, https://www.astm.
Mater, 29(3):1604630. org/d0638-14.html
https://doi.org/10.1002/adma.201604630 https://www.astm.org/d0638-14.html, viewed 04.08.2022
33. Skylar-Scott MA, Mueller J, Visser CW, et al., 2019, Voxelated 46. Aryeetey OJ, Frank M, Lorenz A, et al., 2021, A parameter
soft material via multimaterial multinozzle 3D printing. reduced adaptive quasi-linear viscoelastic model for soft
Nature, 575(7782):330–335. biological tissue in uniaxial tension. Mech Behav Biomed
https://doi.org/10.1038/s41586-019-1736-8 Mater, 126:104999.
34. Talalwa L, Natour G, Bauer A, et al., 2020, Radiological https://doi.org/10.1016/j.jmbbm.2021.104999
characteristics of a new experimental rubber elastomeric 47. Frank M, Marx D, Nedelkovski V, et al., 2018, Dehydration
polymer used in three-dimensional printing with different of individual bovine trabeculae causes transition from
Volume 9 Issue 4 (2023) 102 https://doi.org/10.18063/ijb.721

