Page 111 - IJB-9-4
P. 111
International Journal of Bioprinting 3D-Printed liver model
ductile to quasi brittle failure mode. Mech Behav Biomed printing for a realistic phantom. Materials, 13(21):
Mater, 87:296–305. 5042.
https://doi.org/10.1016/j.jmbbm.2018.07.039 https://doi.org/10.3390/ma13215042
48. Aryeetey OJ, Frank M, Lorenz A, et al., 2022, Fracture 51. Rietzel E, Schardt D, Haberer T, 2007, Range accuracy in
toughness determination of porcine muscle tissue based on carbon ion treatment planning based on CT-calibration
AQLV model derived viscous dissipated energy. Mech Behav with real tissue samples. Radiat Oncol, 2(14).
Biomed Mater, 153:105429.
https://doi.org/10.1186/1748-717X-2-14
https://doi.org/10.1016/j.jmbbm.2022.105429 52. Toledo JM, Ribeiro TPC, 2009, Radiological evaluation
of a liver simulator in comparison to a human real liver.
49. Goh GD, Sing SL, Lim YF, et al., 2021, Machine learning for
3D printed multi-materials tissue-mimicking anatomical Proceedings of the International Nuclear Atlantic Conference
– INAC 2009. ISBN: 978-85-99141-03-8
models. Mater Des, 211:110125.
53. Jaksa L, Hatamikia S, Pahr DH, et al., 2022, 3D-printer enabling
https://doi.org/10.1016/j.matdes.2021.110125 customized anatomic models, Poster at the 27th Congress of the
European Society of Biomechanics, Porto, Portugal.
50. Kwon J, Ock J, Kim N, 2020, Mimicking the mechanical
properties of aortic tissue with pattern-embedded 3D https://doi.org/10.13140/RG.2.2.28812.39049
Volume 9 Issue 4 (2023) 103 https://doi.org/10.18063/ijb.721

