Page 193 - IJB-9-4
P. 193

International Journal of Bioprinting                                      3D-printed middle ear prostheses



            31.  Soetedjo AAP, Lee JM, Lau HH, et al., 2021, Tissue   part implementation in the machine-building industry: A
               engineering and 3D printing of bioartificial pancreas for   cross-organizational focus group interview study. J Manuf
               regenerative medicine in diabetes. Trends Endocrinol Metab,   Technol Manag, 32(4):909–931.
               32(8):609–622.
                                                                  https://doi.org/10.1108/JMTM-06-2020-0239
               https://doi.org/10.1016/j.tem.2021.05.007
                                                               38.  Verboeket V, Khajavi SH, Krikke H, et al., 2021, Additive
            32.  Bandyopadhyay A, Mitra I, Bose S, 2020, 3D printing for   manufacturing for localized medical parts production: A
               bone regeneration. Curr Osteoporos Rep, 18(5):505–514.  case study. IEEE Access, 9:25818–25834.
               https://doi.org/10.1007/s11914-020-00606-2         https://doi.org/10.1109/ACCESS.2021.3056058
            33.  Brunello G, Sivolella S, Meneghello R, et al., 2016, Powder-  39.  Valtonen I, Rautio S, Salmi M, 2022, Capability development
               based 3D printing for bone tissue engineering. Biotechnol   in hybrid organizations: Enhancing military logistics with
               Adv, 34(5):740–753.                                additive manufacturing. Progr Addit Manuf, 7(5):1–16.
               https://doi.org/10.1016/j.biotechadv.2016.03.009   https://doi.org/10.1007/s40964-022-00280-z
            34.  Kamrava  B, Gerstenhaber  JA, Amin  M, et al., 2017,   40.  Heiland KE, Goode RL, Asai M, et al., 1999, A human
               Preliminary model for the design of a custom middle ear   temporal bone study of stapes footplate movement.  Am J
               prosthesis. Otol Neurotol, 38(6):839–845.          Otol, 20(1):81–86.
               https://doi.org/10.1097/mao.0000000000001403    41.  Hato  N,  Stenfelt  S,  Goode  RL,  2003,  Three-dimensional
            35.  Milazzo M, Muyshondt PGG, Carstensen J, et al., 2020, De   stapes footplate motion in human temporal bones. Audiol
               novo topology optimization of total ossicular replacement   Neurootol, 8(3):140–152.
               prostheses. J Mech Behav Biomed Mater, 103:103541.  https://doi.org/10.1159/000069475
               https://doi.org/10.1016/j.jmbbm.2019.103541     42.  Sim JH, Chatzimichalis M, Lauxmann M, et al., 2010,
            36.  Akmal JS, Salmi M, Hemming B, et al., 2020, Cumulative   Complex stapes motions in human ears.  J Assoc Res
               inaccuracies in implementation of additive manufacturing   Otolaryngol, 11(3):329–341.
               through medical imaging, 3D thresholding, and 3D   https://doi.org/10.1007/s10162-010-0207-6
               modeling: A case study for an end-use implant.  Appl Sci,   43.  Kemp P, Stralen JV, De Graaf P, et al., 2020, Cone-beam CT
               10(8):2968.
                                                                  compared to multi-slice CT for the diagnostic analysis of
               https://doi.org/10.3390/app10082968                conductive hearing loss: A feasibility study. J Int Adv Otol,
                                                                  16(2):222–226.
            37.  Chekurov S, Salmi M, Verboeket V, et al., 2021, Assessing
               industrial barriers of additively manufactured digital spare   https://doi.org/10.5152/iao.2020.5883



































            Volume 9 Issue 4 (2023)                        185                         https://doi.org/10.18063/ijb.727
   188   189   190   191   192   193   194   195   196   197   198