Page 229 - IJB-9-4
P. 229

International Journal of Bioprinting                Simulation-based comparative analysis of nozzles for bioprinting



            12.  Singh, AV, Dad Ansari M, Wang S, et al., 2019, The adoption of   23.  Wu D, Yu Y, Tan J, et al., 2018, 3D bioprinting of gellan gum
               three-dimensional additive manufacturing from biomedical   and poly (ethylene glycol) diacrylate based hydrogels to
               material design to 3D organ printing. Appl Sci, 9(4):811.  produce human-scale constructs with high-fidelity.  Mater
                                                                  Design, 160:486–495.
               https://doi.org/10.3390/app9040811
                                                                  https://doi.org/10.1016/j.matdes.2018.09.040
            13.  Chaudhry A, Naheed A, Latif Z, et al., 2022, Applications
               and limitations of 3D bioprinters in tissue culturing: A   24.  Yan KC, Paluch K, Nair K, et al., 2009, Effects of process
               review. Abasyn J Life Sci, 5(1):31–43.             parameters on cell damage in a 3d cell printing process. In
                                                                  ASME International Mechanical Engineering Congress and
               https://doi.org/10.34091/AJLS.5.1.4
                                                                  Exposition (Vol. 43758, pp. 75–81).
            14.  Ng WL, Huang X, Shkolnikov V, et al., 2022, Controlling   https://doi.org/10.1115/IMECE2009-11528
               droplet impact velocity and droplet volume: Key factors to
               achieving high cell viability in sub-nanoliter droplet-based   25.  Li M, Tian X, Kozinski JA, et al., 2015, Modeling mechanical
               bioprinting. Int J Bioprint, 8(1):424.             cell damage in the bioprinting process employing a conical
                                                                  needle. J Mech Med Biol, 15(05):1550073.
               https://dx.doi.org/10.18063/ijb.v8i1.424
                                                                  https://doi.org/10.1142/S0219519415500736.
            15.  Gómez-Blanco JC, Galván-Chacón V, Patrocinio D, et al.,
               2021,  Improving  cell  viability  and  velocity  in  μ-extrusion   26.  Boularaoui S, Al Hussein G, Khan KA,  et al., 2020, An
               bioprinting with a novel pre-incubator bioprinter and a   overview of extrusion-based bioprinting with a focus
               standard FDM 3D printing nozzle. Materials, 14(11):3100.  on induced shear stress and its effect on cell viability.
                                                                  Bioprinting, 20:e00093.
               https://doi.org/10.3390/ma14113100
                                                                  https://doi.org/10.1016/j.bprint.2020.e00093
            16.  Fu Z, Naghieh S, Xu C, et al., 2021, Printability in extrusion
               bioprinting. Biofabrication, 13(3):033001.      27.  Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al.,
                                                                  2020, Hydrogels for bioprinting: A systematic review of
               https://doi.org/10.1088/1758-5090/abe7ab
                                                                  hydrogels synthesis, bioprinting parameters, and bioprinted
            17.  Gao T, Gillispie GJ, Copus JS,  et al., 2018, Optimization   structures behavior. Front Bioeng Biotechnol, 8:776.
               of  gelatin–alginate  composite  bioink  printability  https://doi.org/10.3389/fbioe.2020.00776
               using  rheological  parameters:  A  systematic  approach.
               Biofabrication, 10(3):034106.                   28.  Axpe E, Oyen ML, 2016, Applications of alginate-based
                                                                  bioinks in 3D bioprinting. Int J Mol Sci, 17(12):1976.
               https://doi.org/10.1088/1758-5090/aacdc7
                                                                  https://doi.org/10.3390/ijms17121976
            18.  He Y, Yang F, Zhao H, et al., 2016, Research on the printability
               of hydrogels in 3D bioprinting. Sci Rep, 6(1):1–13.  29.  Dutta S, Cohn D, 2017, Temperature and pH responsive 3D
                                                                  printed scaffolds. J Mater Chem B, 5(48):9514–9521.
               https://doi.org/10.1038/srep29977
                                                                  https://doi.org/10.1039/c7tb02368e
            19.  Jeon O, Lee YB, Hinton TJ, et al., 2019, Cryopreserved cell-
               laden alginate microgel bioink for 3D bioprinting of living   30.  Kim W, Kim G, 2020, 3D bioprinting of functional cell-
               tissues. Mater Today Chem, 12:61–70.               laden bioinks and its application for cell-alignment and
                                                                  maturation. Appl Mater Today, 19:100588.
               https://doi.org/10.1016/j.mtchem.2018.11.009
                                                                  https://doi.org/10.1016/j.apmt.2020.100588
            20.  Yang RM, Xu J, Huang CC, 2022, Effect of ionic crosslinking on
               morphology and thermostability of biomimetic supercritical   31.  Zhou D, Chen J, Liu B, et al., 2019, Bioinks for jet-based
               fluids-decellularized dermal-based composite bioscaffolds   bioprinting. Bioprinting, 16:e00060.
               for bioprinting applications. Int J Bioprint. 9(1):625.
                                                                  https://doi.org/10.1016/j.bprint.2019.e00060
               https://dx.doi.org/10.18063/ijb.v9i1.625
                                                               32.  Ouyang  L, Yao  R,  Zhao Y,  et al.,  2016, Effect of  bioink
            21.  Raddatz L, Lavrentieva A, Pepelanova I,  et al., 2018,   properties on printability and cell viability for 3D bioplotting
               Development and application of an additively manufactured   of embryonic stem cells. Biofabrication, 8(3):035020.
               calcium chloride nebulizer for alginate 3D-bioprinting
               purposes. J Funct Biomater, 9(4):63.               https://doi.org/10.1088/1758-5090/8/3/035020
                                                               33.  Kiyotake EA, Douglas AW, Thomas EE,  et al., 2019,
               https://doi.org/10.3390/jfb9040063
                                                                  Development and quantitative characterization of the
            22.  Zheng Z, Wu J, Liu M, et al., 2018, 3D bioprinting of self‐  precursor rheology of hyaluronic acid hydrogels for
               standing silk‐based bioink. Adv Healthc Mater, 7(6):1701026.  bioprinting. Acta Biomater, 95:176–187.
               https://doi.org/10.1002/adhm.201701026             https://doi.org/10.1016/j.actbio.2019.01.041


            Volume 9 Issue 4 (2023)                        221                         https://doi.org/10.18063/ijb.730
   224   225   226   227   228   229   230   231   232   233   234