Page 229 - IJB-9-4
P. 229
International Journal of Bioprinting Simulation-based comparative analysis of nozzles for bioprinting
12. Singh, AV, Dad Ansari M, Wang S, et al., 2019, The adoption of 23. Wu D, Yu Y, Tan J, et al., 2018, 3D bioprinting of gellan gum
three-dimensional additive manufacturing from biomedical and poly (ethylene glycol) diacrylate based hydrogels to
material design to 3D organ printing. Appl Sci, 9(4):811. produce human-scale constructs with high-fidelity. Mater
Design, 160:486–495.
https://doi.org/10.3390/app9040811
https://doi.org/10.1016/j.matdes.2018.09.040
13. Chaudhry A, Naheed A, Latif Z, et al., 2022, Applications
and limitations of 3D bioprinters in tissue culturing: A 24. Yan KC, Paluch K, Nair K, et al., 2009, Effects of process
review. Abasyn J Life Sci, 5(1):31–43. parameters on cell damage in a 3d cell printing process. In
ASME International Mechanical Engineering Congress and
https://doi.org/10.34091/AJLS.5.1.4
Exposition (Vol. 43758, pp. 75–81).
14. Ng WL, Huang X, Shkolnikov V, et al., 2022, Controlling https://doi.org/10.1115/IMECE2009-11528
droplet impact velocity and droplet volume: Key factors to
achieving high cell viability in sub-nanoliter droplet-based 25. Li M, Tian X, Kozinski JA, et al., 2015, Modeling mechanical
bioprinting. Int J Bioprint, 8(1):424. cell damage in the bioprinting process employing a conical
needle. J Mech Med Biol, 15(05):1550073.
https://dx.doi.org/10.18063/ijb.v8i1.424
https://doi.org/10.1142/S0219519415500736.
15. Gómez-Blanco JC, Galván-Chacón V, Patrocinio D, et al.,
2021, Improving cell viability and velocity in μ-extrusion 26. Boularaoui S, Al Hussein G, Khan KA, et al., 2020, An
bioprinting with a novel pre-incubator bioprinter and a overview of extrusion-based bioprinting with a focus
standard FDM 3D printing nozzle. Materials, 14(11):3100. on induced shear stress and its effect on cell viability.
Bioprinting, 20:e00093.
https://doi.org/10.3390/ma14113100
https://doi.org/10.1016/j.bprint.2020.e00093
16. Fu Z, Naghieh S, Xu C, et al., 2021, Printability in extrusion
bioprinting. Biofabrication, 13(3):033001. 27. Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al.,
2020, Hydrogels for bioprinting: A systematic review of
https://doi.org/10.1088/1758-5090/abe7ab
hydrogels synthesis, bioprinting parameters, and bioprinted
17. Gao T, Gillispie GJ, Copus JS, et al., 2018, Optimization structures behavior. Front Bioeng Biotechnol, 8:776.
of gelatin–alginate composite bioink printability https://doi.org/10.3389/fbioe.2020.00776
using rheological parameters: A systematic approach.
Biofabrication, 10(3):034106. 28. Axpe E, Oyen ML, 2016, Applications of alginate-based
bioinks in 3D bioprinting. Int J Mol Sci, 17(12):1976.
https://doi.org/10.1088/1758-5090/aacdc7
https://doi.org/10.3390/ijms17121976
18. He Y, Yang F, Zhao H, et al., 2016, Research on the printability
of hydrogels in 3D bioprinting. Sci Rep, 6(1):1–13. 29. Dutta S, Cohn D, 2017, Temperature and pH responsive 3D
printed scaffolds. J Mater Chem B, 5(48):9514–9521.
https://doi.org/10.1038/srep29977
https://doi.org/10.1039/c7tb02368e
19. Jeon O, Lee YB, Hinton TJ, et al., 2019, Cryopreserved cell-
laden alginate microgel bioink for 3D bioprinting of living 30. Kim W, Kim G, 2020, 3D bioprinting of functional cell-
tissues. Mater Today Chem, 12:61–70. laden bioinks and its application for cell-alignment and
maturation. Appl Mater Today, 19:100588.
https://doi.org/10.1016/j.mtchem.2018.11.009
https://doi.org/10.1016/j.apmt.2020.100588
20. Yang RM, Xu J, Huang CC, 2022, Effect of ionic crosslinking on
morphology and thermostability of biomimetic supercritical 31. Zhou D, Chen J, Liu B, et al., 2019, Bioinks for jet-based
fluids-decellularized dermal-based composite bioscaffolds bioprinting. Bioprinting, 16:e00060.
for bioprinting applications. Int J Bioprint. 9(1):625.
https://doi.org/10.1016/j.bprint.2019.e00060
https://dx.doi.org/10.18063/ijb.v9i1.625
32. Ouyang L, Yao R, Zhao Y, et al., 2016, Effect of bioink
21. Raddatz L, Lavrentieva A, Pepelanova I, et al., 2018, properties on printability and cell viability for 3D bioplotting
Development and application of an additively manufactured of embryonic stem cells. Biofabrication, 8(3):035020.
calcium chloride nebulizer for alginate 3D-bioprinting
purposes. J Funct Biomater, 9(4):63. https://doi.org/10.1088/1758-5090/8/3/035020
33. Kiyotake EA, Douglas AW, Thomas EE, et al., 2019,
https://doi.org/10.3390/jfb9040063
Development and quantitative characterization of the
22. Zheng Z, Wu J, Liu M, et al., 2018, 3D bioprinting of self‐ precursor rheology of hyaluronic acid hydrogels for
standing silk‐based bioink. Adv Healthc Mater, 7(6):1701026. bioprinting. Acta Biomater, 95:176–187.
https://doi.org/10.1002/adhm.201701026 https://doi.org/10.1016/j.actbio.2019.01.041
Volume 9 Issue 4 (2023) 221 https://doi.org/10.18063/ijb.730

