Page 230 - IJB-9-4
P. 230

International Journal of Bioprinting                Simulation-based comparative analysis of nozzles for bioprinting



            34.  Jia J, Richards DJ, Pollard S, et al., 2014, Engineering alginate   45.  Smith C, Oldt G, 2018, Multiaxial bio-printer head, viewed
               as bioink for bioprinting. Acta Biomater, 10(10):4323–4331.  January 23, 2023,
               https://doi.org/10.1016/j.actbio.2014.06.034       https://5f6357c8-abe2-426e-bc22-b9f609a0b347.filesusr.
            35.  Ashammakhi N, Ahadian S, Xu C,  et  al., 2019, Bioinks   com/ugd/e69967_73cde5aebac44f11b0432814832a2110.pdf
               and bioprinting technologies to make heterogeneous and   46.  Stewart  B,  2017,  3D Bioprinting Hydrogel for Tissue
               biomimetic tissue constructs. Mater Today Biol, 1:100008.  Engineering an Ascending Aortic Scaffold, Thesis, Digital
               https://doi.org/10.1016/j.mtbio.2019.100008        Commons @ DU, University of Denver.
            36.  Zhang S, Vijayavenkataraman S, Lu WF,  et al., 2019, A   47.  Liravi F, Darleux R, Toyserkani E, 2017, Additive
               review on the use of computational methods to characterize,   manufacturing of 3D structures with non-Newtonian highly
               design, and optimize tissue engineering scaffolds, with a   viscous fluids: Finite element modeling and experimental
               potential in 3D printing fabrication. J Biomed Mater Res Part   validation. Addit Manuf, 13:113–123.
               B Appl Biomater, 107(5):1329–1351.                 https://doi.org/10.1016/j.addma.2016.10.008
               https://doi.org/10.1002/jbm.b.34226
                                                               48.  Billiet T, Gevaert E, De Schryver T,  et al., 2014, The 3D
            37.  Göhl J, Markstedt K, Mark A, et al., 2018, Simulations of 3D   printing of gelatin methacrylamide cell-laden tissue-
               bioprinting: Predicting bioprintability of nanofibrillar inks.   engineered constructs with high cell viability. Biomaterials,
               Biofabrication, 10(3):034105.                      35(1):49–62.
               https://doi.org/10.1088/1758-5090/aac872           https://doi.org/10.1016/j.biomaterials.2013.09.078
            38.  Blaeser  A,  Duarte-Campos  DF,  Puster  U,  et al.,  2016,   49.  Samanipour R, Wang Z, Ahmadi A, et al., 2016, Experimental
               Controlling shear stress in 3D bioprinting is a key factor   and computational study of microfluidic flow‐focusing
               to balance printing resolution and stem cell integrity. Adv   generation of gelatin methacrylate hydrogel droplets. J Appl
               Healthc Mater, 5(3):326–333.                       Polym Sci, 133(29):43701.
               https://doi.org/10.1002/adhm.201500677             https://doi.org/10.1002/app.43701
            39.  Liu W, Heinrich MA, Zhou Y,  et al., 2017, Extrusion   50.  Gómez-Blanco JC, Mancha-Sánchez E, Marcos AC, et al.,
               bioprinting of shear‐thinning gelatin methacryloyl bioinks.   2020, Bioink temperature influence on shear stress, pressure
               Adv Healthc Mater, 6(12):1601451.                  and velocity using computational simulation.  Processes,
               https://doi.org/10.1002/adhm.201601451             8(7):865.
            40.  Magalhães  IP, Oliveira PMD, Dernowsek J,  et al., 2019.   https://doi.org/10.3390/pr8070865
               Investigation of the effect of nozzle design on rheological
               bioprinting properties using computational fluid dynamics.   51.  Verma A, Vishnoi P, Sukhotskiy V, et al., 2018, Numerical
               Matéria (Rio J.), 24(3):12401.                     simulation of extrusion additive manufacturing: Fused
                                                                  deposition modelling, in TechConnect Briefs, 4, 118–121.
               https://doi.org/10.1590/s1517-707620190003.0714
                                                               52.  Serdeczny MP, Comminal R, Pedersen DB,  et al., 2018,
            41.  Martanto  W,  Baisch  SM,  Costner  EA,  et al.,  2005,  Fluid   Experimental validation of a numerical model for the strand
               dynamics  in  conically  tapered  microneedles.  AIChE J,   shape in material extrusion additive manufacturing. Addit
               51(6):1599–1607.                                   Manuf, 24:145–153.
               https://doi.org/10.1002/aic.10424                  https://doi.org/10.1016/j.addma.2018.09.022
            42.  Reid JA, Mollica PA, Johnson GD, et al., 2016, Accessible   53.  E3D-ONLINE JR, 2016, E3D V6 series blueprint, viewed
               bioprinting: Adaptation of a low-cost 3D-printer for precise   January 23, 2023,
               cell placement and stem cell differentiation. Biofabrication,
               8(2):025017.                                       https://e3d-online.zendesk.com/hc/en-us/article_
                                                                  attachments/4904924634141/V6-NOZZLE-ALL__6_.pdf
               https://doi.org/10.1088/1758-5090/8/2/025017
                                                               54.  JB, 2019, Cellink bioink biopritning protocol, viewed
            43.  Leppiniemi  J, Lahtinen P, Paajanen  A,  et al., 2017,
               3D-printable bioactivated nanocellulose–alginate hydrogels.   January 23, 2023,
               ACS Appl Mater Interfaces, 9(26):21959–21970.      https://www.cellink.com/wp-content/uploads/2023/02/
               https://doi.org/10.1021/acsami.7b02756             Bioprinting-Protocol-CELLINK-Bioink_2-Jan-2023-2.pdf
            44.  Nair K, Yan KC,  Sun W,  2008, A  computational modeling   55.  Müller M, Öztürk E, Arlov Ø, et al., 2017, Alginate sulfate–
               approach for the characterization of mechanical properties of 3D   nanocellulose bioinks for cartilage bioprinting applications.
               alginate tissue scaffolds. J Appl Biomater Biomech, 6(1):35–46.  Ann Biomed Eng, 45(1):210–223.
               https://doi.org/10.1177/228080000800600106         https://doi.org/10.1007/s10439-016-1704-5


            Volume 9 Issue 4 (2023)                        222                         https://doi.org/10.18063/ijb.730
   225   226   227   228   229   230   231   232   233   234   235