Page 386 - IJB-9-4
P. 386
International Journal of Bioprinting Evolution of bioprinting
30. Sachlos E, Wahl DA, Triffitt JT, et al., 2008, The impact of 40. Norotte C, Marga FS, Niklason LE, et al., 2009, Scaffold-free
critical point drying with liquid carbon dioxide on collagen- vascular tissue engineering using bioprinting. Biomaterials,
hydroxyapatite composite scaffolds. Acta Biomater, 4(5): 30(30): 5910–5917.
1322–1331.
http://doi.org/10.1016/J.BIOMATERIALS.2009.06.034.
http://doi.org/10.1016/J.ACTBIO.2008.03.016.
41. Guillemot F, Souquet A, Catros S, et al., 2010, High-
31. Fedorovich NE, de Wijn JR, Verbout AJ, et al., 2008, Three- throughput laser printing of cells and biomaterials for tissue
dimensional fiber deposition of cell-laden, viable, patterned engineering. Acta Biomater, 6(7): 2494–2500.
constructs for bone tissue printing. Tissue Eng Part A, 14(1): http://doi.org/10.1016/J.ACTBIO.2009.09.029.
127–133.
42. Nakamura M, Iwanaga S, Henmi C, et al., 2010, Biomatrices
http://doi.org/10.1089/TEN.A.2007.0158.
and biomaterials for future developments of bioprinting and
32. Ryan GE, Pandit AS, Apatsidis DP, 2008, Porous titanium biofabrication. Biofabrication, 2(1): 014110.
scaffolds fabricated using a rapid prototyping and powder http://doi.org/10.1088/1758-5082/2/1/014110.
metallurgy technique. Biomaterials, 29(27): 3625–3635.
43. Lee W, Lee V, Polio S, et al., 2010, On-demand three-
http://doi.org/10.1016/J.BIOMATERIALS.2008.05.032. dimensional freeform fabrication of multi-layered hydrogel
33. Fierz FC, Beckmann F, Huser M, et al., The morphology scaffold with fluidic channels. Biotechnol Bioeng, 105(6):
of anisotropic 3D-printed hydroxyapatite scaffolds. 1178–1186.
Biomaterials, 29(28): 3799–3806. http://doi.org/10.1002/BIT.22613.
http://doi.org/10.1016/J.BIOMATERIALS.2008.06.012. 44. Chang R, Emami K, Wu H, et al., 2010, Biofabrication of
34. Wu W, Zheng Q, Guo X, et al., 2009, A programmed a three-dimensional liver micro-organ as an in vitro drug
release multi-drug implant fabricated by three-dimensional metabolism model. Biofabrication, 2(4): 045004.
printing technology for bone tuberculosis therapy. Biomed http://doi.org/10.1088/1758-5082/2/4/045004.
Mater, 4(6): 065005.
45. Arai K, Iwanaga S, Toda H, et al., 2011, Three-dimensional
http://doi.org/10.1088/1748-6041/4/6/065005. inkjet biofabrication based on designed images.
35. Nishiyama Y, Nakamura M, Henmi C, et al., 2009, Biofabrication, 3(3): 034113.
Development of a three-dimensional bioprinter: Construction http://doi.org/10.1088/1758-5082/3/3/034113.
of cell supporting structures using hydrogel and state-of-the-
art inkjet technology. J Biomech Eng, 131(3): 035001. 46. Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted
amniotic fluid-derived stem cells accelerate healing
http://doi.org/10.1115/1.3002759. of large skin wounds. Stem Cells Transl Med, 1(11):
36. Lee W, Debasitis JC, Lee VK, et al., 2009, Multi-layered 792–802.
culture of human skin fibroblasts and keratinocytes through http://doi.org/10.5966/SCTM.2012-0088.
three-dimensional freeform fabrication. Biomaterials, 30(8):
1587–1595. 47. Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid casting
of patterned vascular networks for perfusable engineered
http://doi.org/10.1016/J.BIOMATERIALS.2008.12.009. three-dimensional tissues. Nat Mater, 11(9): 768–774.
37. Barry RA, Shepherd R, Hanson JN, et al., 2009, Direct-write http://doi.org/10.1038/NMAT3357.
assembly of 3D hydrogel scaffolds for guided cell growth.
Adv Mater, 21(23): 2407–2410. 48. Miller JS, Stevens KR, Yang MT, et al, 2012, Effects
of silica and zinc oxide doping on mechanical and
http://doi.org/10.1002/ADMA.200803702. biological properties of 3D printed tricalcium phosphate
38. Fedorovich NE, Swennen I, Girones J, et al., 2009, Evaluation tissue engineering scaffolds. Dent Mater, 28(2):
of photocrosslinked Lutrol hydrogel for tissue printing 113–122.
applications. Biomacromolecules, 10(7): 1689–1696. http://doi.org/10.1016/J.DENTAL.2011.09.010.
http://doi.org/10.1021/BM801463Q. 49. Hockaday LA, Kang KH, Colangelo NW, et al., 2012, Rapid
39. Cui X, Boland T, 2009, Human microvasculature fabrication 3D printing of anatomically accurate and mechanically
using thermal inkjet printing technology. Biomaterials, heterogeneous aortic valve hydrogel scaffolds. Biofabrication,
30(31): 6221–6227. 4(3): 035005.
http://doi.org/10.1088/1758-5082/4/3/035005.
http://doi.org/10.1016/J.BIOMATERIALS.2009.07.056.
Volume 9 Issue 4 (2023) 378 https://doi.org/10.18063/ijb.742

