Page 386 - IJB-9-4
P. 386

International Journal of Bioprinting                                             Evolution of bioprinting



            30.  Sachlos E, Wahl DA, Triffitt JT, et al., 2008, The impact of   40.  Norotte C, Marga FS, Niklason LE, et al., 2009, Scaffold-free
               critical point drying with liquid carbon dioxide on collagen-  vascular tissue engineering using bioprinting. Biomaterials,
               hydroxyapatite composite scaffolds.  Acta Biomater, 4(5):   30(30): 5910–5917.
               1322–1331.
                                                                  http://doi.org/10.1016/J.BIOMATERIALS.2009.06.034.
               http://doi.org/10.1016/J.ACTBIO.2008.03.016.
                                                               41.  Guillemot F, Souquet A, Catros S,  et al., 2010, High-
            31.  Fedorovich NE, de Wijn JR, Verbout AJ, et al., 2008, Three-  throughput laser printing of cells and biomaterials for tissue
               dimensional fiber deposition of cell-laden, viable, patterned   engineering. Acta Biomater, 6(7): 2494–2500.
               constructs for bone tissue printing. Tissue Eng Part A, 14(1):   http://doi.org/10.1016/J.ACTBIO.2009.09.029.
               127–133.
                                                               42.  Nakamura M, Iwanaga S, Henmi C, et al., 2010, Biomatrices
               http://doi.org/10.1089/TEN.A.2007.0158.
                                                                  and biomaterials for future developments of bioprinting and
            32.  Ryan GE, Pandit AS, Apatsidis DP, 2008, Porous titanium   biofabrication. Biofabrication, 2(1): 014110.
               scaffolds fabricated using a rapid prototyping and powder   http://doi.org/10.1088/1758-5082/2/1/014110.
               metallurgy technique. Biomaterials, 29(27): 3625–3635.
                                                               43.  Lee W, Lee V, Polio S,  et al., 2010, On-demand three-
               http://doi.org/10.1016/J.BIOMATERIALS.2008.05.032.  dimensional freeform fabrication of multi-layered hydrogel
            33.  Fierz FC, Beckmann F, Huser M,  et al., The morphology   scaffold with fluidic channels.  Biotechnol Bioeng, 105(6):
               of anisotropic 3D-printed hydroxyapatite scaffolds.   1178–1186.
               Biomaterials, 29(28): 3799–3806.                   http://doi.org/10.1002/BIT.22613.
               http://doi.org/10.1016/J.BIOMATERIALS.2008.06.012.  44.  Chang R, Emami K, Wu H, et al., 2010, Biofabrication of
            34.  Wu W, Zheng Q, Guo X,  et al., 2009, A programmed   a three-dimensional liver micro-organ as an in vitro drug
               release multi-drug implant fabricated by three-dimensional   metabolism model. Biofabrication, 2(4): 045004.
               printing technology for bone tuberculosis therapy. Biomed   http://doi.org/10.1088/1758-5082/2/4/045004.
               Mater, 4(6): 065005.
                                                               45.  Arai K, Iwanaga S, Toda H, et al., 2011, Three-dimensional
               http://doi.org/10.1088/1748-6041/4/6/065005.       inkjet biofabrication based on designed images.
            35.  Nishiyama Y, Nakamura  M,  Henmi  C,  et al.,  2009,   Biofabrication, 3(3): 034113.
               Development of a three-dimensional bioprinter: Construction   http://doi.org/10.1088/1758-5082/3/3/034113.
               of cell supporting structures using hydrogel and state-of-the-
               art inkjet technology. J Biomech Eng, 131(3): 035001.  46.  Skardal A, Mack D, Kapetanovic E, et al., 2012, Bioprinted
                                                                  amniotic fluid-derived stem cells accelerate healing
               http://doi.org/10.1115/1.3002759.                  of large skin wounds.  Stem Cells Transl Med, 1(11):
            36.  Lee W, Debasitis JC, Lee VK,  et al., 2009, Multi-layered   792–802.
               culture of human skin fibroblasts and keratinocytes through   http://doi.org/10.5966/SCTM.2012-0088.
               three-dimensional freeform fabrication. Biomaterials, 30(8):
               1587–1595.                                      47.  Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid casting
                                                                  of patterned vascular networks for perfusable engineered
               http://doi.org/10.1016/J.BIOMATERIALS.2008.12.009.  three-dimensional tissues. Nat Mater, 11(9): 768–774.
            37.  Barry RA, Shepherd R, Hanson JN, et al., 2009, Direct-write   http://doi.org/10.1038/NMAT3357.
               assembly of 3D hydrogel scaffolds for guided cell growth.
               Adv Mater, 21(23): 2407–2410.                   48.  Miller JS, Stevens KR, Yang MT,  et al, 2012, Effects
                                                                  of silica and zinc oxide doping on mechanical and
               http://doi.org/10.1002/ADMA.200803702.             biological properties of 3D printed tricalcium phosphate
            38.  Fedorovich NE, Swennen I, Girones J, et al., 2009, Evaluation   tissue  engineering  scaffolds.  Dent  Mater,  28(2):
               of photocrosslinked Lutrol hydrogel for tissue printing   113–122.
               applications. Biomacromolecules, 10(7): 1689–1696.  http://doi.org/10.1016/J.DENTAL.2011.09.010.
               http://doi.org/10.1021/BM801463Q.               49.  Hockaday LA, Kang KH, Colangelo NW, et al., 2012, Rapid
            39.  Cui X, Boland T, 2009, Human microvasculature fabrication   3D  printing  of  anatomically accurate  and  mechanically
               using  thermal  inkjet  printing  technology.  Biomaterials,   heterogeneous aortic valve hydrogel scaffolds. Biofabrication,
               30(31): 6221–6227.                                 4(3): 035005.
                                                                  http://doi.org/10.1088/1758-5082/4/3/035005.
               http://doi.org/10.1016/J.BIOMATERIALS.2009.07.056.






            Volume 9 Issue 4 (2023)                        378                         https://doi.org/10.18063/ijb.742
   381   382   383   384   385   386   387   388   389   390   391