Page 387 - IJB-9-4
P. 387

International Journal of Bioprinting                                             Evolution of bioprinting



            50.  Zopf DA, Hollister SJ, Nelson ME, et al., 2013, Bioresorbable   61.  Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional
               airway splint created with a three-dimensional printer.    tissue analogues with decellularized extracellular matrix
               N Engl J Med, 368(21): 2043–2045.                  bioink. Nat Commun, 5(1): 1–11.
               http://doi.org/10.1056/NEJMC1206319.               http://doi.org/10.1038/ncomms4935.
            51.  Xu T, Zhao W, Zhu JM, et al., 2013, Complex heterogeneous   62.  Visser J, Melchels FPW, Jeon JE, et al., 2015, Reinforcement of
               tissue constructs containing multiple cell types prepared by   hydrogels using three-dimensionally printed microfibres. Nat
               inkjet printing technology. Biomaterials, 34(1): 130–139.  Commun, 6(1): 1–10.
               http://doi.org/10.1016/J.BIOMATERIALS.2012.09.035.  http://doi.org/10.1038/ncomms7933.
            52.  Michael S, Sorg H, Peck CT, et al., 2013, Tissue engineered   63.  Jakus AE, Secor EB, Rutz AL, et al., 2015, Three-dimensional
               skin substitutes created by laser-assisted bioprinting form   printing of  high-content  graphene  scaffolds  for  electronic
               skin-like structures in the dorsal skin fold chamber in mice.   and biomedical applications. ACS Nano, 9(4): 4636–4648.
               PLoS One, 8(3): 0057741.
                                                                  http://doi.org/10.1021/ACSNANO.5B01179.
               http://doi.org/10.1371/JOURNAL.PONE.0057741.
                                                               64.  Markstedt K, Mantas A, Tournier I,  et  al., 2015, 3D
            53.  Duan B, Hockaday LA, Kang KH, et al., 2013, 3D bioprinting   bioprinting human chondrocytes with nanocellulose-
               of heterogeneous aortic valve conduits with alginate/gelatin   alginate bioink for cartilage tissue engineering applications.
               hydrogels. J Biomed Mater Res A, 101(5): 1255–1264.  Biomacromolecules, 16(5): 1489–1496.
               http://doi.org/10.1002/JBM.A.34420.                http://doi.org/10.1021/ACS.BIOMAC.5B00188/ASSET/
                                                                  IMAGES/LARGE/BM-2015-00188Z_0007.JPEG.
            54.  Schuurman  W,  Levett  PA,  Pot  MW,  et  al.,  2013,  Gelatin-
               methacrylamide hydrogels as potential biomaterials for   65.  Hong S, Sycks D, Fai Chan H, et al., 2015, 3D printing of
               fabrication of tissue-engineered cartilage constructs.   highly stretchable and tough hydrogels into complex,
               Macromol Biosci, 13(5): 551–561.                   cellularized structures. Adv Mater, 27(27): 4035–4040.
               http://doi.org/10.1002/MABI.201200471.             http://doi.org/10.1002/ADMA.201501099.
            55.  Mannoor MS, Jiang Z, James T,  et al., 2013, 3D printed   66.  Lozano R, Stevens L, Thompson BC, et al., 2015, 3D printing
               bionic ears. Nano Lett, 13(6): 2634–2639.          of layered brain-like structures using peptide modified
                                                                  gellan gum substrates. Biomaterials, 67: 264–273.
               http://doi.org/10.1021/NL4007744.
                                                                  http://doi.org/10.1016/J.BIOMATERIALS.2015.07.022.
            56.  Lee VK, Lanzi AM, Ngo H, et al., 2014, Generation of multi-
               scale vascular network system within 3D hydrogel using 3D   67.  Yue K, Trujillo-de Santiago G, Alvarez MM,  et al., 2015,
               bio-printing technology. Cell Mol Bioeng, 7(3): 460–472.  Synthesis, properties, and biomedical applications of gelatin
                                                                  methacryloyl (GelMA) hydrogels. Biomaterials, 73: 254–271.
               http://doi.org/10.1007/S12195-014-0340-0.
                                                                  http://doi.org/10.1016/J.BIOMATERIALS.2015.08.045.
            57.  Lee VK, Kim DY, Ngo H,  et al., 2014, Creating perfused
               functional vascular channels using 3D bio-printing   68.  Kang HW, Lee SJ, Ko IK,  et al., 2016, A 3D bioprinting
               technology. Biomaterials, 35(28): 8092–8102.       system to produce human-scale tissue constructs with
                                                                  structural integrity. Nat Biotechnol, 34(3): 312–319.
               http://doi.org/10.1016/J.BIOMATERIALS.2014.05.083.
                                                                  http://doi.org/10.1038/nbt.3413.
            58.  Kolesky DB, Truby RL, Gladman AS,  et al., 2014, 3D
               bioprinting of vascularized, heterogeneous cell-laden tissue   69.  Kolesky DB, Homan KA, Skylar-Scott MA,  et al., 2016,
               constructs. Adv Mater, 26(19): 3124–3130.          Three-dimensional bioprinting of thick vascularized tissues.
                                                                  Proc Natl Acad Sci U S A, 113(12): 3179–3184.
               http://doi.org/10.1002/ADMA.201305506.
                                                                  http://doi.org/10.1073/PNAS.1521342113.
            59.  Zhao Y, Yao R, Ouyang L, et al., 2014, Three-dimensional
               printing of Hela cells for cervical tumor model in vitro.   70.  Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting for
               Biofabrication, 6(3): 035001.                      engineering complex tissues. Biotechnol Adv, 34(4): 422–434.
                                                                  http://doi.org/10.1016/J.BIOTECHADV.2015.12.011.
               http://doi.org/10.1088/1758-5082/6/3/035001.
                                                               71.  Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D
            60.  Billiet T, Gevaert E, de Schryver T, et al., 2014, The 3D printing   bioprinting of perfusable vascular constructs using a blend
               of gelatin methacrylamide cell-laden tissue-engineered   bioink. Biomaterials, 106: 58–68.
               constructs with high cell viability. Biomaterials, 35(1): 49–62.
                                                                  http://doi.org/10.1016/J.BIOMATERIALS.2016.07.038.
               http://doi.org/10.1016/J.BIOMATERIALS.2013.09.078.




            Volume 9 Issue 4 (2023)                        379                         https://doi.org/10.18063/ijb.742
   382   383   384   385   386   387   388   389   390   391   392