Page 387 - IJB-9-4
P. 387
International Journal of Bioprinting Evolution of bioprinting
50. Zopf DA, Hollister SJ, Nelson ME, et al., 2013, Bioresorbable 61. Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional
airway splint created with a three-dimensional printer. tissue analogues with decellularized extracellular matrix
N Engl J Med, 368(21): 2043–2045. bioink. Nat Commun, 5(1): 1–11.
http://doi.org/10.1056/NEJMC1206319. http://doi.org/10.1038/ncomms4935.
51. Xu T, Zhao W, Zhu JM, et al., 2013, Complex heterogeneous 62. Visser J, Melchels FPW, Jeon JE, et al., 2015, Reinforcement of
tissue constructs containing multiple cell types prepared by hydrogels using three-dimensionally printed microfibres. Nat
inkjet printing technology. Biomaterials, 34(1): 130–139. Commun, 6(1): 1–10.
http://doi.org/10.1016/J.BIOMATERIALS.2012.09.035. http://doi.org/10.1038/ncomms7933.
52. Michael S, Sorg H, Peck CT, et al., 2013, Tissue engineered 63. Jakus AE, Secor EB, Rutz AL, et al., 2015, Three-dimensional
skin substitutes created by laser-assisted bioprinting form printing of high-content graphene scaffolds for electronic
skin-like structures in the dorsal skin fold chamber in mice. and biomedical applications. ACS Nano, 9(4): 4636–4648.
PLoS One, 8(3): 0057741.
http://doi.org/10.1021/ACSNANO.5B01179.
http://doi.org/10.1371/JOURNAL.PONE.0057741.
64. Markstedt K, Mantas A, Tournier I, et al., 2015, 3D
53. Duan B, Hockaday LA, Kang KH, et al., 2013, 3D bioprinting bioprinting human chondrocytes with nanocellulose-
of heterogeneous aortic valve conduits with alginate/gelatin alginate bioink for cartilage tissue engineering applications.
hydrogels. J Biomed Mater Res A, 101(5): 1255–1264. Biomacromolecules, 16(5): 1489–1496.
http://doi.org/10.1002/JBM.A.34420. http://doi.org/10.1021/ACS.BIOMAC.5B00188/ASSET/
IMAGES/LARGE/BM-2015-00188Z_0007.JPEG.
54. Schuurman W, Levett PA, Pot MW, et al., 2013, Gelatin-
methacrylamide hydrogels as potential biomaterials for 65. Hong S, Sycks D, Fai Chan H, et al., 2015, 3D printing of
fabrication of tissue-engineered cartilage constructs. highly stretchable and tough hydrogels into complex,
Macromol Biosci, 13(5): 551–561. cellularized structures. Adv Mater, 27(27): 4035–4040.
http://doi.org/10.1002/MABI.201200471. http://doi.org/10.1002/ADMA.201501099.
55. Mannoor MS, Jiang Z, James T, et al., 2013, 3D printed 66. Lozano R, Stevens L, Thompson BC, et al., 2015, 3D printing
bionic ears. Nano Lett, 13(6): 2634–2639. of layered brain-like structures using peptide modified
gellan gum substrates. Biomaterials, 67: 264–273.
http://doi.org/10.1021/NL4007744.
http://doi.org/10.1016/J.BIOMATERIALS.2015.07.022.
56. Lee VK, Lanzi AM, Ngo H, et al., 2014, Generation of multi-
scale vascular network system within 3D hydrogel using 3D 67. Yue K, Trujillo-de Santiago G, Alvarez MM, et al., 2015,
bio-printing technology. Cell Mol Bioeng, 7(3): 460–472. Synthesis, properties, and biomedical applications of gelatin
methacryloyl (GelMA) hydrogels. Biomaterials, 73: 254–271.
http://doi.org/10.1007/S12195-014-0340-0.
http://doi.org/10.1016/J.BIOMATERIALS.2015.08.045.
57. Lee VK, Kim DY, Ngo H, et al., 2014, Creating perfused
functional vascular channels using 3D bio-printing 68. Kang HW, Lee SJ, Ko IK, et al., 2016, A 3D bioprinting
technology. Biomaterials, 35(28): 8092–8102. system to produce human-scale tissue constructs with
structural integrity. Nat Biotechnol, 34(3): 312–319.
http://doi.org/10.1016/J.BIOMATERIALS.2014.05.083.
http://doi.org/10.1038/nbt.3413.
58. Kolesky DB, Truby RL, Gladman AS, et al., 2014, 3D
bioprinting of vascularized, heterogeneous cell-laden tissue 69. Kolesky DB, Homan KA, Skylar-Scott MA, et al., 2016,
constructs. Adv Mater, 26(19): 3124–3130. Three-dimensional bioprinting of thick vascularized tissues.
Proc Natl Acad Sci U S A, 113(12): 3179–3184.
http://doi.org/10.1002/ADMA.201305506.
http://doi.org/10.1073/PNAS.1521342113.
59. Zhao Y, Yao R, Ouyang L, et al., 2014, Three-dimensional
printing of Hela cells for cervical tumor model in vitro. 70. Mandrycky C, Wang Z, Kim K, et al., 2016, 3D bioprinting for
Biofabrication, 6(3): 035001. engineering complex tissues. Biotechnol Adv, 34(4): 422–434.
http://doi.org/10.1016/J.BIOTECHADV.2015.12.011.
http://doi.org/10.1088/1758-5082/6/3/035001.
71. Jia W, Gungor-Ozkerim PS, Zhang YS, et al., 2016, Direct 3D
60. Billiet T, Gevaert E, de Schryver T, et al., 2014, The 3D printing bioprinting of perfusable vascular constructs using a blend
of gelatin methacrylamide cell-laden tissue-engineered bioink. Biomaterials, 106: 58–68.
constructs with high cell viability. Biomaterials, 35(1): 49–62.
http://doi.org/10.1016/J.BIOMATERIALS.2016.07.038.
http://doi.org/10.1016/J.BIOMATERIALS.2013.09.078.
Volume 9 Issue 4 (2023) 379 https://doi.org/10.18063/ijb.742

