Page 389 - IJB-9-4
P. 389
International Journal of Bioprinting Evolution of bioprinting
94. Albanna M, Binder KW, Murphy SV, et al., 2019, In situ 105. Murphy Sv, Atala A, 2014, 3D bioprinting of tissues and
bioprinting of autologous skin cells accelerates wound organs. Nat Biotechnol, 32(8): 773–785.
healing of extensive excisional full-thickness wounds. Sci http://doi.org/10.1038/NBT.2958.
Rep, 9(1): 1856.
106. Ingber DE, Mow VC, Butler D, et al., 2006, Tissue engineering
http://doi.org/10.1038/S41598-018-38366-W. and developmental biology: Going biomimetic. Tissue Eng,
95. Chen P, Zheng L, Wang Y, et al., 2019, Desktop-stereolithography 12(12): 3265–3283.
3D printing of a radially oriented extracellular matrix/ http://doi.org/10.1089/TEN.2006.12.3265.
mesenchymal stem cell exosome bioink for osteochondral
defect regeneration. Theranostics, 9(9): 2439–2459. 107. Derby B, 2012, Printing and prototyping of tissues and
scaffolds. Science, 338(6109): 921–926.
http://doi.org/10.7150/THNO.31017.
http://doi.org/10.1126/SCIENCE.1226340.
96. Choi YJ, Jun YJ, Kim DY, et al., 2019, A 3D cell printed muscle
construct with tissue-derived bioink for the treatment of 108. Kelm JM, Lorber V, Snedeker JG, et al., 2010, A novel concept
volumetric muscle loss. Biomaterials, 206: 160–169. for scaffold-free vessel tissue engineering: Self-assembly of
microtissue building blocks. J Biotechnol, 148(1): 46–55.
http://doi.org/10.1016/J.BIOMATERIALS.2019.03.036.
http://doi.org/10.1016/J.JBIOTEC.2010.03.002.
97. Wan Z, Zhang P, Liu Y, et al., 2020, Four-dimensional
bioprinting: Current developments and applications in bone 109. Alajati A, Laib AM, Weber H, et al., 2008, Spheroid-based
tissue engineering. Acta Biomater, 101: 26–42. engineering of a human vasculature in mice. Nat Methods,
5(5): 439–445.
http://doi.org/10.1016/J.ACTBIO.2019.10.038.
http://doi.org/10.1038/NMETH.1198.
98. Pan S, Yin J, Yu L, et al., 2020, 2D MXene‐integrated
3D‐printing scaffolds for augmented osteosarcoma 110. Gao G, Ahn M, Cho WW, et al., 2021, 3D printing of
phototherapy and accelerated tissue reconstruction. Adv Sci, pharmaceutical application: Drug screening and drug
7(2): 1901511. delivery. Pharmaceutics, 13(9): 1373.
http://doi.org/10.3390/PHARMACEUTICS13091373.
http://doi.org/10.1002/ADVS.201901511.
111. Vaidya M, 2015, Startups tout commercially 3D-printed
99. Datta P, Dey M, Ataie Z, et al., 2020, 3D bioprinting for tissue for drug screening. Nat Med, 21(1): 2.
reconstituting the cancer microenvironment. NPJ Precis
Oncol, 4(1): 18. http://doi.org/10.1038/NM0115-2.
http://doi.org/10.1038/S41698-020-0121-2. 112. Zhang B, Korolj A, Lai BFL, et al., Advances in organ-on-a-
chip engineering. Nat Rev Mater, 3(8): 257–278.
100. Zarrintaj P, Ramsey JD, Samadi A, et al., 2020, Poloxamer:
A versatile tri-block copolymer for biomedical applications. http://doi.org/10.1038/S41578-018-0034-7.
Acta Biomater, 110: 37–67. 113. Saleh FA, Genever PG, 2011, Turning round: Multipotent
http://doi.org/10.1016/J.ACTBIO.2020.04.028. stromal cells, a three-dimensional revolution? Cytotherapy,
13(8): 903–912.
101. Sun Y, You Y, Jiang W, et al., 2020, Generating ready-to-
implant anisotropic menisci by 3D-bioprinting protein- http://doi.org/10.3109/14653249.2011.586998.
releasing cell-laden hydrogel-polymer composite scaffold. 114. Joseph JS, Malindisa ST, Ntwasa M, 2018, Two-dimensional
Appl Mater Today, 18: 100469.
(2D) and three-dimensional (3D) cell culturing in drug
http://doi.org/10.1016/J.APMT.2019.100469. discovery, in Cell Culture, IntechOpen.
102. Dong H, Hu B, Zhang W, et al., 2023, Robotic-assisted http://doi.org/10.5772/INTECHOPEN.81552.
automated in situ bioprinting. Int J Bioprint, 9(1): 98–108.
115. Harb A, Fakhreddine M, Zaraket H, et al., 2021, Three-
http://doi.org/10.18063/IJB.V9I1.629. dimensional cell culture models to study respiratory
103. Klak M, Kosowska K, Bryniarski T, et al., 2022, Bioink based virus infections including COVID-19. Biomimetics
on the dECM for 3D bioprinting of bionic tissue, the first (Basel), 7(1): 3.
results obtained on murine model. Bioprinting, 28(1): e00233. http://doi.org/10.3390/BIOMIMETICS7010003.
http://doi.org/10.1016/J.BPRINT.2022.E00233. 116. Rijsbergen LC, van Dijk LLA, Engel MFM, et al., 2021,
104. Pavan Kalyan B, Kumar L, 2022, 3D printing: Applications In vitro modelling of respiratory virus infections in
in tissue engineering, medical devices, and drug delivery. human airway epithelial cells – A systematic review. Front
AAPS PharmSciTech, 23(4): 92. Immunol, 12(1): 683002.
http://doi.org/10.1208/S12249-022-02242-8. http://doi.org/10.3389/FIMMU.2021.683002/BIBTEX.
Volume 9 Issue 4 (2023) 381 https://doi.org/10.18063/ijb.742

