Page 389 - IJB-9-4
P. 389

International Journal of Bioprinting                                             Evolution of bioprinting



            94.  Albanna M, Binder KW, Murphy SV,  et  al., 2019, In situ   105.  Murphy Sv, Atala A, 2014, 3D bioprinting of tissues and
               bioprinting of autologous skin cells accelerates wound   organs. Nat Biotechnol, 32(8): 773–785.
               healing of extensive excisional full-thickness wounds.  Sci   http://doi.org/10.1038/NBT.2958.
               Rep, 9(1): 1856.
                                                               106.  Ingber DE, Mow VC, Butler D, et al., 2006, Tissue engineering
               http://doi.org/10.1038/S41598-018-38366-W.          and  developmental  biology:  Going biomimetic.  Tissue Eng,
            95.  Chen P, Zheng L, Wang Y, et al., 2019, Desktop-stereolithography   12(12): 3265–3283.
               3D printing of a radially oriented extracellular matrix/  http://doi.org/10.1089/TEN.2006.12.3265.
               mesenchymal stem cell exosome bioink for osteochondral
               defect regeneration. Theranostics, 9(9): 2439–2459.  107.  Derby B, 2012, Printing and prototyping of tissues and
                                                                   scaffolds. Science, 338(6109): 921–926.
               http://doi.org/10.7150/THNO.31017.
                                                                   http://doi.org/10.1126/SCIENCE.1226340.
            96.  Choi YJ, Jun YJ, Kim DY, et al., 2019, A 3D cell printed muscle
               construct with tissue-derived bioink  for  the treatment of   108.  Kelm JM, Lorber V, Snedeker JG, et al., 2010, A novel concept
               volumetric muscle loss. Biomaterials, 206: 160–169.  for scaffold-free vessel tissue engineering: Self-assembly of
                                                                   microtissue building blocks. J Biotechnol, 148(1): 46–55.
               http://doi.org/10.1016/J.BIOMATERIALS.2019.03.036.
                                                                   http://doi.org/10.1016/J.JBIOTEC.2010.03.002.
            97.  Wan Z, Zhang P, Liu Y,  et al., 2020, Four-dimensional
               bioprinting: Current developments and applications in bone   109.  Alajati A, Laib AM, Weber H, et al., 2008, Spheroid-based
               tissue engineering. Acta Biomater, 101: 26–42.      engineering of a human vasculature in mice. Nat Methods,
                                                                   5(5): 439–445.
               http://doi.org/10.1016/J.ACTBIO.2019.10.038.
                                                                   http://doi.org/10.1038/NMETH.1198.
            98.  Pan S, Yin J, Yu L,  et al., 2020, 2D MXene‐integrated
               3D‐printing scaffolds for augmented osteosarcoma   110.  Gao G, Ahn M, Cho WW,  et al., 2021, 3D printing of
               phototherapy and accelerated tissue reconstruction. Adv Sci,   pharmaceutical application: Drug screening and drug
               7(2): 1901511.                                      delivery. Pharmaceutics, 13(9): 1373.
                                                                   http://doi.org/10.3390/PHARMACEUTICS13091373.
               http://doi.org/10.1002/ADVS.201901511.
                                                               111.  Vaidya M, 2015, Startups tout commercially 3D-printed
            99.  Datta P, Dey M, Ataie Z,  et al., 2020, 3D bioprinting for   tissue for drug screening. Nat Med, 21(1): 2.
               reconstituting the cancer microenvironment.  NPJ  Precis
               Oncol, 4(1): 18.                                    http://doi.org/10.1038/NM0115-2.
               http://doi.org/10.1038/S41698-020-0121-2.       112.  Zhang B, Korolj A, Lai BFL, et al., Advances in organ-on-a-
                                                                   chip engineering. Nat Rev Mater, 3(8): 257–278.
            100.  Zarrintaj P, Ramsey JD, Samadi A, et al., 2020, Poloxamer:
                A versatile tri-block copolymer for biomedical applications.   http://doi.org/10.1038/S41578-018-0034-7.
                Acta Biomater, 110: 37–67.                     113.  Saleh FA, Genever PG, 2011, Turning round: Multipotent
                http://doi.org/10.1016/J.ACTBIO.2020.04.028.       stromal cells, a three-dimensional revolution? Cytotherapy,
                                                                   13(8): 903–912.
            101.  Sun Y, You Y, Jiang W, et al., 2020, Generating ready-to-
                implant  anisotropic  menisci  by  3D-bioprinting  protein-  http://doi.org/10.3109/14653249.2011.586998.
                releasing cell-laden hydrogel-polymer composite scaffold.   114.  Joseph JS, Malindisa ST, Ntwasa M, 2018, Two-dimensional
                Appl Mater Today, 18: 100469.
                                                                   (2D) and three-dimensional (3D) cell culturing in drug
                http://doi.org/10.1016/J.APMT.2019.100469.         discovery, in Cell Culture, IntechOpen.
            102.  Dong  H,  Hu B,  Zhang  W,  et al.,  2023,  Robotic-assisted   http://doi.org/10.5772/INTECHOPEN.81552.
                automated in situ bioprinting. Int J Bioprint, 9(1): 98–108.
                                                               115.  Harb A, Fakhreddine M, Zaraket H, et al., 2021, Three-
                http://doi.org/10.18063/IJB.V9I1.629.              dimensional cell culture models to study respiratory
            103.  Klak M, Kosowska K, Bryniarski T, et al., 2022, Bioink based   virus infections including COVID-19.  Biomimetics
                on the dECM for 3D bioprinting of bionic tissue, the first   (Basel), 7(1): 3.
                results obtained on murine model. Bioprinting, 28(1): e00233.  http://doi.org/10.3390/BIOMIMETICS7010003.
                http://doi.org/10.1016/J.BPRINT.2022.E00233.   116.  Rijsbergen LC, van Dijk LLA, Engel MFM,  et al., 2021,
            104.  Pavan Kalyan B, Kumar L, 2022, 3D printing: Applications   In  vitro  modelling  of  respiratory virus  infections  in
                in tissue engineering, medical devices, and drug delivery.   human airway epithelial cells – A systematic review. Front
                AAPS PharmSciTech, 23(4): 92.                      Immunol, 12(1): 683002.
                http://doi.org/10.1208/S12249-022-02242-8.         http://doi.org/10.3389/FIMMU.2021.683002/BIBTEX.



            Volume 9 Issue 4 (2023)                        381                         https://doi.org/10.18063/ijb.742
   384   385   386   387   388   389   390   391   392   393   394