Page 385 - IJB-9-4
P. 385

International Journal of Bioprinting                                             Evolution of bioprinting



               the surface engineering of poly(lactic acid).  Surf Interface   Proceedings of the Fifth National Conference on Rapid Design,
               Anal, 31(1): 46–50.                                Prototyping, and Manufacturing, 53–60.
               http://doi.org/10.1002/SIA.951.                 17.  Komatsu H, Iwasawa N, Citterio D, et al., 2004, Design and
                                                                  synthesis of highly sensitive and selective fluorescein-derived
            7.   Zeltinger J, Sherwood JK, Graham DA, et al., 2001, Effect of   magnesium fluorescent probes and application to intracellular
               pore size and void fraction on cellular adhesion, proliferation,   3D Mg2+ imaging. J Am Chem Soc, 126(50): 16353–16360.
               and matrix deposition. Tissue Eng, 7(5): 557–572.
                                                                  http://doi.org/10.1021/JA049624L.
               http://doi.org/10.1089/107632701753213183.
                                                               18.  Ball P, 2005, Body painting. Nat Mater, 4(8): 582.
            8.   Ringeisen BR, Chrisey DB, Krizman DB, et al., 2002, Cell-
               by-cell construction of living tissue by ambient laser transfer.   http://doi.org/10.1038/nmat1439.
               Proceedings of the Second Annual International IEEE-EMBS   19.  Mironov V, 2005, The Second International Workshop on
               Special  Topic  Conference  on  Microtechnologies  in  Medicine   bioprinting, biopatterning and bioassembly.  Expert Opin
               and Biology, 120–125.                              Biol Ther, 5(8): 1111–1115.
               http://doi.org/10.1109/MMB.2002.1002277.           http://doi.org/10.1517/14712598.5.8.1111.
            9.   Mironov V, Boland T, Trusk T, et al., 2003, Organ printing:   20.  . Leukers B, Gülkan H, Irsen SH, et al., 2005, Biocompatibility
               Computer-aided jet-based 3D tissue engineering.  Trends   of  ceramic  scaffolds for  bone replacement  made  by  3D
               Biotechnol, 21(4): 157–161.                        printing. Materwiss Werksttech, 36(12): 781–787.

               http://doi.org/10.1016/S0167-7799(03)00033-7.      http://doi.org/10.1002/MAWE.200500968.
                                                               21.  Leukers B, Gülkan H, Irsen SH, et al., 2005, Hydroxyapatite
            10.  Boland T, Mironov V, Gutowska A,  et  al., 2003, Cell
               and organ printing 2: Fusion of cell aggregates in three-  scaffolds for bone tissue engineering made by 3D printing.
               dimensional gels. Anat Rec, 272(2): 497–502.       J Mater Sci Mater Med, 16(12): 1121–1124.
                                                                  http://doi.org/10.1007/S10856-005-4716-5.
               http://doi.org/10.1002/AR.A.10059.
                                                               22.  Chang R, Starly B, Sun W, et al., 2006, Freeform bioprinting of
            11.  ben Hsieh H, Fitch J, White D,  et al., 2004, Ultra-high-  liver encapsulated in alginate hydrogels tissue constructs for
               throughput microarray generation and liquid dispensing   pharmacokinetic study. Proceedings of the 2006 International
               using multiple disposable piezoelectric ejectors.  J Biomol   Solid Freeform Fabrication Symposium.
               Screen, 9(2): 85–94.
                                                               23.  Mironov V, Reis N, Derby B, 2006, Review: Bioprinting: A
               http://doi.org/10.1177/1087057103260943.           beginning. Tissue Eng, 12(4): 631–634.
            12.  Pfister A, Landers R, Laib A, et al., 2004, Biofunctional rapid   http://doi.org/10.1089/TEN.2006.12.631.
               prototyping for tissue-engineering applications: 3D bioplotting   24.  Mironov V, 2006, Toward human organ printing: Charleston
               versus 3D printing. J Polym Sci A Polym Chem, 42(3): 624–638.
                                                                  Bioprinting Symposium. ASAIO J, 52(6): 27–30.
               http://doi.org/10.1002/POLA.10807.                 http://doi.org/10.1097/01.MAT.0000248999.25334.6A.
            13.  Jakab K, Neagu A, Mironov V,  et al.,  2004,  Engineering   25.  Fakhrzadeh H, Larikani B, 2007, Bioprinting: Prospects of a
               biological structures of prescribed shape using self-assembling   rapidly growing technology. J Diabetes Lipid Disord, 7(1): 1–7.
               multicellular systems. Proc Natl Acad Sci U S A, 101(9): 2864.
                                                               26.  Mironov V, Kasyanov V, Markwald R, 2007, Bioprinting:
               http://doi.org/10.1073/PNAS.0400164101.            Directed tissue self-assembly. Chem Eng Prog, 103: S12–S17.
            14.  Ackermann J, Videlot C, Nguyen TN,  et al., 2004, Gel-  27.  IEEE, 2007,  2007 International Symposium on VLSI
               layer-assisted directional electropolymerization: A versatile   Technology, Systems and Applications (VLSI-TSA), Hsinchu,
               method for high-resolution volume and surface patterning   Taiwan IEEE.
               of flexible substrates with conjugated polymers. Adv Mater,   http://lib.ugent.be/catalog/ebk01:1000000000525455
               16(19): 1709–1712.
                                                               28.  Suwanprateeb J, Sanngam R, Suwanpreuk W, 2008,
               http://doi.org/10.1002/ADMA.200306705.             Fabrication of bioactive hydroxyapatite/bis-GMA based
            15.  Fridman G, Li M, Friedman G, et al., 2004, Non-thermal   composite via three dimensional printing. J Mater Sci Mater
               plasma bioPrinter with nano-scale precision. Proceedings of   Med, 19(7): 2637–2645.
               the IEEE International Conference on Plasma Science, 170.  http://doi.org/10.1007/S10856-007-3362-5.
               http://doi.org/10.1109/PLASMA.2004.1339724.     29.  Igawa K, Chung U-i, Tei Y, 2008, Custom-made artificial
            16.  Hackney PM, Pancholi KP, 2004, Application of the   bones fabricated by an inkjet printing technology.
               Z-Corps three-dimensional printing processes using novel   Clin Calcium, 18(12): 1737–1743.
               material to manufacture bio-scaffold for bone replacement.   http://doi.org/clica081217371743.


            Volume 9 Issue 4 (2023)                        377                         https://doi.org/10.18063/ijb.742
   380   381   382   383   384   385   386   387   388   389   390