Page 388 - IJB-9-4
P. 388

International Journal of Bioprinting                                             Evolution of bioprinting



            72.  Ma X, Qu X, Zhu W, et al., 2016, Deterministically patterned   83.  Gopinathan J, Noh I, 2018, Recent trends in bioinks for 3D
               biomimetic human iPSC-derived hepatic model via rapid   printing. Biomater Res, 22(1).
               3D bioprinting. Proc Natl Acad Sci U S A, 113(8): 2206–2211.  http://doi.org/10.1186/S40824-018-0122-1.
               http://doi.org/10.1073/PNAS.1524510113.         84.  Gao  T,  Gillipsie  GJ,  Copus  JS,  et al.,  2018,  Optimization
            73.  Homan KA, Kolesky DB, Skylar-Scott MA,  et al., 2016,   of  gelatin-alginate  composite  bioink  printability
               Bioprinting of 3D convoluted renal proximal tubules on   using  rheological  parameters:  A  systematic  approach.
               perfusable chips. Sci Rep, 6(1): 1–13.             Biofabrication, 10(3): 034106.
               http://doi.org/10.1038/srep34845.                  http://doi.org/10.1088/1758-5090/AACDC7.
            74.  Bhise NS, Manoharan V, Massa S,  et al., 2016, A liver-  85.  Hoarau-Véchot J, Rafii A, Touboul C, et al., 2018, Halfway
               on-a-chip platform with bioprinted hepatic spheroids.   between 2D and animal models: Are 3D cultures the ideal
               Biofabrication, 8(1): 014101.                      tool to study cancer-microenvironment interactions?
                                                                  Int J Mol Sci, 19(1): 181.
               http://doi.org/10.1088/1758-5090/8/1/014101.
                                                                  http://doi.org/10.3390/IJMS19010181.
            75.  Guo F, Mao Z, Chen Y,  et al., 2016, Three-dimensional
               manipulation of single cells using surface acoustic waves.   86.  Kim BS, Kwon YW, Kong JS, et al., 2018, 3D cell printing of in
               Proc Natl Acad Sci U S A, 113(6): 1522–1527.       vitro stabilized skin model and in vivo pre-vascularized skin
                                                                  patch using tissue-specific extracellular matrix bioink: A
               http://doi.org/10.1073/PNAS.1524813113.            step towards advanced skin tissue engineering. Biomaterials,
            76.  Lind JU, Busbee TA, Valentine AD, et al., 2017, Instrumented   168: 38–53.
               cardiac microphysiological devices via multi-material 3D   http://doi.org/10.1016/J.BIOMATERIALS.2018.03.040.
               printing. Nat Mater, 16(3): 303.
                                                               87.  Qian Y, Zhao X, Han Q, et al., 2018, An integrated multi-
               http://doi.org/10.1038/NMAT4782.                   layer 3D-fabrication of PDA/RGD coated graphene loaded
            77.  Jang J, Park HJ, Kim SW, et al., 2017, 3D printed complex tissue   PCL nanoscaffold for peripheral nerve restoration.  Nat
               construct using stem cell-laden decellularized extracellular   Commun, 9(1): 1–16.
               matrix bioinks for cardiac repair. Biomaterials, 112: 264–274.  http://doi.org/10.1038/s41467-017-02598-7.
               http://doi.org/10.1016/J.BIOMATERIALS.2016.10.026.  88.  Isaacson A, Swioklo S, Connon CJ, 2018, 3D bioprinting of a
            78.  Yao Q, Cosme JGL, Xu T, et al., 2017, Three dimensional   corneal stroma equivalent. Exp Eye Res, 173: 188–193.
               electrospun PCL/PLA blend nanofibrous scaffolds with   http://doi.org/10.1016/J.EXER.2018.05.010.
               significantly improved stem cells osteogenic differentiation
               and cranial bone formation. Biomaterials, 115: 115–127.  89.  Joung D, Truong V, Neitzke CC,  et al., 2018, 3D printed
                                                                  stem-cell derived neural progenitors generate spinal cord
               http://doi.org/10.1016/J.BIOMATERIALS.2016.11.018.  scaffolds. Adv Funct Mater, 28(39): 1801850.
            79.  Laronda MM, Rutz AL, Xiao S, et al., 2017, A bioprosthetic   http://doi.org/10.1002/ADFM.201801850.
               ovary created using 3D printed microporous scaffolds
               restores ovarian function in sterilized mice. Nat Commun,   90.  Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting
               8(1): 15261.                                       of collagen to rebuild components of the human heart.
                                                                  Science, 365(6452): 482–487.
               http://doi.org/10.1038/NCOMMS15261.
                                                                  http://doi.org/10.1126/SCIENCE.AAV9051.
            80.  Schaffner M, Rühs PA, Coulter F, et al., 2017, 3D printing of
               bacteria into functional complex materials. Sci Adv, 3(12):   91.  Noor N, Shapira A, Edri R,  et al., 2019, 3D printing of
               eaao6804.                                          personalized thick and perfusable cardiac patches and
                                                                  hearts. Adv Sci, 6(11): 1900344.
               http://doi.org/10.1126/SCIADV.AAO6804.
                                                                  http://doi.org/10.1002/ADVS.201900344.
            81.  Bulanova EA, Koudan EV, Degosserie J,  et al., 2017,
               Bioprinting of  a  functional vascularized mouse  thyroid   92.  Koffler J, Zhu W, Qu X, et al., 2019, Biomimetic 3D-printed
               gland construct. Biofabrication, 9(3): 034105.     scaffolds for spinal cord injury repair. Nat Med, 25(2): 263–269.
               http://doi.org/10.1088/1758-5090/AA7FDD.           http://doi.org/10.1038/S41591-018-0296-Z.
            82.  Turnbull G, Clarke J, Picard F,  et al., 2017, 3D bioactive   93.  Yi HG, Jeong YH, Kim Y, et al., 2019, A bioprinted human-
               composite scaffolds for bone tissue engineering.  Bioact   glioblastoma-on-a-chip for the identification of patient-
               Mater, 3(3): 278–314.                              specific responses to chemoradiotherapy. Nat Biomed Eng,
               http://doi.org/10.1016/J.BIOACTMAT.2017.10.001.    3(7): 509–519.
                                                                  http://doi.org/10.1038/S41551-019-0363-X.




            Volume 9 Issue 4 (2023)                        380                         https://doi.org/10.18063/ijb.742
   383   384   385   386   387   388   389   390   391   392   393