Page 388 - IJB-9-4
P. 388
International Journal of Bioprinting Evolution of bioprinting
72. Ma X, Qu X, Zhu W, et al., 2016, Deterministically patterned 83. Gopinathan J, Noh I, 2018, Recent trends in bioinks for 3D
biomimetic human iPSC-derived hepatic model via rapid printing. Biomater Res, 22(1).
3D bioprinting. Proc Natl Acad Sci U S A, 113(8): 2206–2211. http://doi.org/10.1186/S40824-018-0122-1.
http://doi.org/10.1073/PNAS.1524510113. 84. Gao T, Gillipsie GJ, Copus JS, et al., 2018, Optimization
73. Homan KA, Kolesky DB, Skylar-Scott MA, et al., 2016, of gelatin-alginate composite bioink printability
Bioprinting of 3D convoluted renal proximal tubules on using rheological parameters: A systematic approach.
perfusable chips. Sci Rep, 6(1): 1–13. Biofabrication, 10(3): 034106.
http://doi.org/10.1038/srep34845. http://doi.org/10.1088/1758-5090/AACDC7.
74. Bhise NS, Manoharan V, Massa S, et al., 2016, A liver- 85. Hoarau-Véchot J, Rafii A, Touboul C, et al., 2018, Halfway
on-a-chip platform with bioprinted hepatic spheroids. between 2D and animal models: Are 3D cultures the ideal
Biofabrication, 8(1): 014101. tool to study cancer-microenvironment interactions?
Int J Mol Sci, 19(1): 181.
http://doi.org/10.1088/1758-5090/8/1/014101.
http://doi.org/10.3390/IJMS19010181.
75. Guo F, Mao Z, Chen Y, et al., 2016, Three-dimensional
manipulation of single cells using surface acoustic waves. 86. Kim BS, Kwon YW, Kong JS, et al., 2018, 3D cell printing of in
Proc Natl Acad Sci U S A, 113(6): 1522–1527. vitro stabilized skin model and in vivo pre-vascularized skin
patch using tissue-specific extracellular matrix bioink: A
http://doi.org/10.1073/PNAS.1524813113. step towards advanced skin tissue engineering. Biomaterials,
76. Lind JU, Busbee TA, Valentine AD, et al., 2017, Instrumented 168: 38–53.
cardiac microphysiological devices via multi-material 3D http://doi.org/10.1016/J.BIOMATERIALS.2018.03.040.
printing. Nat Mater, 16(3): 303.
87. Qian Y, Zhao X, Han Q, et al., 2018, An integrated multi-
http://doi.org/10.1038/NMAT4782. layer 3D-fabrication of PDA/RGD coated graphene loaded
77. Jang J, Park HJ, Kim SW, et al., 2017, 3D printed complex tissue PCL nanoscaffold for peripheral nerve restoration. Nat
construct using stem cell-laden decellularized extracellular Commun, 9(1): 1–16.
matrix bioinks for cardiac repair. Biomaterials, 112: 264–274. http://doi.org/10.1038/s41467-017-02598-7.
http://doi.org/10.1016/J.BIOMATERIALS.2016.10.026. 88. Isaacson A, Swioklo S, Connon CJ, 2018, 3D bioprinting of a
78. Yao Q, Cosme JGL, Xu T, et al., 2017, Three dimensional corneal stroma equivalent. Exp Eye Res, 173: 188–193.
electrospun PCL/PLA blend nanofibrous scaffolds with http://doi.org/10.1016/J.EXER.2018.05.010.
significantly improved stem cells osteogenic differentiation
and cranial bone formation. Biomaterials, 115: 115–127. 89. Joung D, Truong V, Neitzke CC, et al., 2018, 3D printed
stem-cell derived neural progenitors generate spinal cord
http://doi.org/10.1016/J.BIOMATERIALS.2016.11.018. scaffolds. Adv Funct Mater, 28(39): 1801850.
79. Laronda MM, Rutz AL, Xiao S, et al., 2017, A bioprosthetic http://doi.org/10.1002/ADFM.201801850.
ovary created using 3D printed microporous scaffolds
restores ovarian function in sterilized mice. Nat Commun, 90. Lee A, Hudson AR, Shiwarski DJ, et al., 2019, 3D bioprinting
8(1): 15261. of collagen to rebuild components of the human heart.
Science, 365(6452): 482–487.
http://doi.org/10.1038/NCOMMS15261.
http://doi.org/10.1126/SCIENCE.AAV9051.
80. Schaffner M, Rühs PA, Coulter F, et al., 2017, 3D printing of
bacteria into functional complex materials. Sci Adv, 3(12): 91. Noor N, Shapira A, Edri R, et al., 2019, 3D printing of
eaao6804. personalized thick and perfusable cardiac patches and
hearts. Adv Sci, 6(11): 1900344.
http://doi.org/10.1126/SCIADV.AAO6804.
http://doi.org/10.1002/ADVS.201900344.
81. Bulanova EA, Koudan EV, Degosserie J, et al., 2017,
Bioprinting of a functional vascularized mouse thyroid 92. Koffler J, Zhu W, Qu X, et al., 2019, Biomimetic 3D-printed
gland construct. Biofabrication, 9(3): 034105. scaffolds for spinal cord injury repair. Nat Med, 25(2): 263–269.
http://doi.org/10.1088/1758-5090/AA7FDD. http://doi.org/10.1038/S41591-018-0296-Z.
82. Turnbull G, Clarke J, Picard F, et al., 2017, 3D bioactive 93. Yi HG, Jeong YH, Kim Y, et al., 2019, A bioprinted human-
composite scaffolds for bone tissue engineering. Bioact glioblastoma-on-a-chip for the identification of patient-
Mater, 3(3): 278–314. specific responses to chemoradiotherapy. Nat Biomed Eng,
http://doi.org/10.1016/J.BIOACTMAT.2017.10.001. 3(7): 509–519.
http://doi.org/10.1038/S41551-019-0363-X.
Volume 9 Issue 4 (2023) 380 https://doi.org/10.18063/ijb.742

