Page 406 - IJB-9-4
P. 406

International Journal of Bioprinting                 Impingement shear stress during microvalve-based bioprinting



            21.  Köpf M, Nasehi R, Kreimendahl F, et al., 2022, Bioprinting-  29.  Derby B, Reis N, 2003, Inkjet printing of highly loaded
               associated shear stress and hydrostatic pressure affect the   particulate suspensions. MRS Bull, 28(11): 815–818.
               angiogenic potential of human umbilical vein endothelial
               cells. Int J Bioprint, 8(4): 96–107.            30.  Saunders RE, Derby B, 2014, Inkjet printing biomaterials
                                                                  for  tissue  engineering:  Bioprinting.  Int Mater Rev,  59(8):
            22.  Ning L, Betancourt N, Schreyer DJ, et al., 2018, Characterization   430–448.
               of cell damage and proliferative ability during and after
               bioprinting. ACS Biomater Sci Eng, 4(11): 3906–3918.  31.  Duarte  Campos  DF,  Blaeser  A,  2021,  3D-bioprinting,  in
                                                                  Kasper C, Egger D, Lavrentieva A (eds), Basic Concepts on
            23.  Guillemot F, Souquet A, Catros S, et al., 2010, Laser-assisted   3D Cell Culture. Learning Materials in Biosciences, Springer,
               cell printing: Principle, physical parameters versus cell fate   Cham.
               and perspectives in tissue engineering. Nanomedicine, 5(1):
               507–515.                                           https://doi.org/10.1007/978-3-030-66749-8_9
            24.  Ringeisen BR, Kim H, Barron JA, et al., 2004, Laser printing of   32.  Phares DJ, Smedley GT, Flagan RC, 2000, The wall shear
               pluripotent embryonal carcinoma cells. Tissue Eng, 10(3-4):   stress produced by the normal impingement of a jet on a flat
               483–491.                                           surface. J Fluid Mech, 418: 351–375.
            25.  Paxton N, Smolan W, Böck T, et al., 2017, Proposal to assess   33.  Yonemoto Y, Kunugi T, 2017, Analytical consideration of
               printability of bioinks for extrusion-based bioprinting   liquid droplet impingement on solid surfaces. Sci Rep, 7(1):
               and evaluation of rheological properties governing   2362.
               bioprintability. Biofabrication, 9(4): 044107.  34.  AlZaid S, Hammad N, Albalawi HI, et al., 2022, Advanced
            26.  Boukamp P, Petrussevska RT, Breitkreutz D, et al., 1988, Normal   software development of 2D and 3D model visualization
               keratinization in a spontaneously immortalized aneuploid   for TwinPrint, a dual-arm 3D bioprinting system for multi-
               human keratinocyte cell line. J Cell Biol, 106(3): 761–771.  material printing. Mater Sci Addit Manuf, 1(3): 19.
            27.  Jang D, Kim D, Moon J, 2009, Influence of fluid physical   35.  Lee JM, Sing SL, Yeong WY, 2020, Bioprinting of
               properties on ink-jet printability. Langmuir, 25(5): 2629–2635.  multimaterials with computer-aided design/computer-
                                                                  aided manufacturing. Int J Bioprinting, 6(1): 245.
            28.  Ravanbakhsh H, Karamzadeh V, Bao G,  et al., 2021,
               Emerging technologies in multi-material bioprinting.  Adv
               Mater, 33(5):2104730.









































            Volume 9 Issue 4 (2023)                        398                         https://doi.org/10.18063/ijb.743
   401   402   403   404   405   406   407   408   409   410   411