Page 472 - IJB-9-4
P. 472

International Journal of Bioprinting                   β-Ti21S auxetic FGPs produced by laser powder bed fusion


            27.  Kolken HM, Zadpoor AA, 2017, Auxetic mechanical   38.  De Galarreta SR, Doyle RJ, Jeffers J, et al., Laser powder bed
               metamaterials. RSC Adv, 7: 5111–5129.              fusion of porous graded structures: A comparison between
               https://doi.org/10.1039/c6ra27333e                 computational and experimental analysis.  J  Mech Behav
                                                                  Biomed Mater, 123: 104784.
            28.  Kolken HM, Lietaert K, van der Sloten T,  et al., 2020,
               Mechanical performance of auxetic meta-biomaterials.      https://doi.org/10.1016/j.jmbbm.2021.104784
               J Mech Behav Biomed Mater, 104: 103658.         39.  Liu YJ, Wang HL, Li SJ, et al., 2017, Compressive and fatigue
               https://doi.org/10.1016/j.jmbbm.2020.103658        behavior of beta-type titanium porous structures fabricated
                                                                  by electron beam melting. Acta Mater, 126: 58–66.
            29.  Nečemer B, Kramberger J, Vuherer T, et al., 2019, Fatigue
               crack initiation and propagation in re-entrant auxetic      https://doi.org/10.1016/j.actamat.2016.12.052
               cellular structures. Int J Fatigue, 126: 241–247.   40.  Luo  JP,  Huang  YJ,  Xu  JY,  et al.,  2020,  Additively
               https://doi.org/10.1016/j.ijfatigue.2019.05.010    manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable
                                                                  Young’s modulus: Mechanical property, biocompatibility,
            30.  Mizzi L, Spaggiari A, 2021, Chiralisation of euclidean   and proteomics analysis. Mater Sci Eng C Mater Biol Appl,
               polygonal tessellations for the design of new auxetic   114: 110903.
               metamaterials. Mech Mater, 153: 103698.
                                                                  https://doi.org/10.1016/j.msec.2020.110903
               https://doi.org/10.1016/j.mechmat.2020.103698
                                                               41.  Gordon JV, Narra SP, Cunningham RW, et al., 2020, Defect
            31.  Yadroitsava I, du Plessis A, Yadroitsev I, 2019, Bone   structure process maps for laser powder bed fusion additive
               regeneration on implants of titanium alloys produced   manufacturing. Addit Manuf, 36: 101552.
               by laser powder bed fusion: A  review. In: Titanium for
               Consumer Applications Real-world Use Titanium. Elsevier      https://doi.org/10.1016/J.ADDMA.2020.101552
               Publishing Company, Amsterdam, Netherlands. p197–233.   42.  Tang M, Pistorius PC, Beuth JL, 2017, Prediction of lack-
               https://doi.org/10.1016/B978-0-12-815820-3.00016-2  of-fusion porosity for powder bed fusion.  Addit Manuf,
                                                                  14: 39–48.
            32.  Shi  J,  Zhu  L,  Li  L,  et  al.,  2018,  A  TPMS-based  method
               for modeling porous scaffolds for bionic bone tissue      https://doi.org/10.1016/j.addma.2016.12.001
               engineering. Sci Rep, 8: 7395.
                                                               43.  Zhang B, Li Y, Bai Q, 2017, Defect formation mechanisms
               https://doi.org/10.1038/s41598-018-25750-9         in selective laser melting: A  review.  Chin J Mech Eng,
                                                                  30: 515–527.
            33.  Mahmoud D, Elbestawi MA, 2019, Selective laser melting
               of porosity graded lattice structures for bone implants. Int J      https://doi.org/10.1007/S10033-017-0121-5
               Adv Manuf Technol, 100: 2915–2927.
                                                               44.  Alaña M, Cutolo A, Probst G, et al., 2020, Understanding
               https://doi.org/10.1007/s00170-018-2886-9          elastic anisotropy in diamond based lattice structures
            34.  Zhao  S,  Li  SJ,  Wang  SG,  et al.,  2018,  Compressive  and   produced by laser powder bed fusion: Effect of manufacturing
               fatigue behavior of functionally graded Ti-6Al-4V meshes   deviations. Mater Des, 195: 108971.
               fabricated by electron beam melting. Acta Mater, 150: 1–15.      https://doi.org/10.1016/j.matdes.2020.108971
               https://doi.org/10.1016/j.actamat.2018.02.060   45.  Hildebrand T, Rüegsegger P, 1997, A new method for the
            35.  Surmeneva MA, Surmenev RA, Chudinova EA, et al., 2017,   model-independent  assessment  of  thickness  in  three-
               Fabrication  of  multiple-layered  gradient  cellular  metal   dimensional images. J Microsc, 185: 67–75.
               scaffold via electron beam melting for segmental bone      https://doi.org/10.1046/J.1365-2818.1997.1340694.X
               reconstruction. Mater Des, 133: 195–204.
                                                               46.  ASTM, (n.d.), E407 Standard Practice for Microetching
               https://doi.org/10.1016/j.matdes.2017.07.059       Metals and Alloys. United States, Document Center, Inc.
            36.  Dursun AM, Tüzemen MC, Salamci E,  et al., 2022,   47.  International Organization for Standardization, (n.d.),
               Investigation of compatibility between design and additively   ISO 13314:2011-mechanical Testing of  Metals-ductility
               manufactured  parts  of  functionally  graded  porous   Testing-compression Test for Porous and Cellular Metals.
               structures. J Polytech, 25: 1069–1082.             International Organization for Standardization, Geneva,
               https://doi.org/10.2339/politeknik.891080          Switzerland.
            37.  Tüzemen MC, Salamcı E, Ünal R, 2022, Investigation of   48.  Benedetti M, Klarin J, Johansson F, et al., 2019, Study of the
               the relationship between flexural modulus of elasticity and   compression  behaviour  of  Ti6Al4V  trabecular  structures
               functionally  graded  porous  structures  manufactured  by   produced by additive laser manufacturing. Materials (Basel),
               AM. Mater Today Commun, 31: 103592.                12: 1471.
               https://doi.org/10.1016/j.mtcomm.2022.103592       https://doi.org/10.3390/MA12091471


            Volume 9 Issue 4 (2023)                        464                          https://doi.org/10.18063/ijb.728
   467   468   469   470   471   472   473   474   475   476   477