Page 471 - IJB-9-4
P. 471

International Journal of Bioprinting                   β-Ti21S auxetic FGPs produced by laser powder bed fusion


               https://doi.org/10.1016/j.biomaterials.2016.01.012     https://doi.org/10.1016/j.addma.2020.101708
            5.   International Organization for Standardization, 1999, ISO   16.  Claros CA, Campanelli LC, Jorge AM, et al., 2021, Corrosion
               5832-2:1999,  Implants for Surgery-metallic Materials-  behaviour of biomedical β-titanium alloys with the surface-
               Part 2: Unalloyed titanium. International Organization for   modified by chemical etching and electrochemical methods.
               Standardization, Geneva, Switzerland. p3.          Corros Sci, 188: 109544.
            6.   International Organization for Standardization, (n.d.), ISO      https://doi.org/10.1016/j.corsci.2021.109544
               5832-14:2019-implants for Surgery-metallic Materials-  17.  Macias-Sifuentes MA, Xu C, Sanchez-Mata O, et al., 2021,
               Part  14: Wrought Titanium 15-molybdenum 5-zirconium   Microstructure and mechanical properties of β-21S Ti alloy
               3-aluminium alloy. International Organization for   fabricated through laser powder bed fusion.  Prog Addit
               Standardization, Geneva, Switzerland.              Manuf, 6: 417–430.
            7.   Materials  Properties  Handbook,  (n.d.),  Titanium  Alloys.      https://doi.org/10.1007/s40964-021-00181-7
               ASM International, Almere, Netherlands. Available from:
               https://www.asminternational.org/materials-resources/  18.  Pellizzari M, Jam A, Tschon M, et al., 2020, A 3D-printed
               results/-/journal_content/56/10192/06005g/publication   ultra-low young’s modulus  β-Ti alloy for  biomedical
               [Last accessed on 2022 Jul 13].                    applications. Materials (Basel), 13: 2792.
            8.   ASTM, (n.d.), F1295-16-standard Specification for Wrought      https://doi.org/10.3390/ma13122792
               Titanium-6Aluminum-7Niobium  Alloy  for  Surgical  19.  Jam A, du Plessis A, Lora C,  et al., Manufacturability of
               Implant Applications (UNS R56700). ASTM International,   lattice structures fabricated by laser powder bed fusion:
               Pennsylvania.                                      A  novel biomedical application of the beta Ti-21S alloy.
            9.   ASTM, (n.d.), F3046-21-standard Specification for Wrought   Addit Manuf, 50: 102556.
               Titanium-3Aluminum-2.5Vanadium Alloy for Surgical      https://doi.org/10.1016/J.ADDMA.2021.102556
               Implant Applications (UNS R56320). ASTM International,
               Pennsylvania.                                   20.  Gibson LJ, Ashby MF, Harley BA, (n.d.), Cellular Materials
                                                                  in Nature and Medicine. Cambridge University Press,
            10.  ASTM, (n.d.), F2066-18-standard Specification  for   Cambridge, United Kingdom. p309.
               Wrought Titanium-15 Molybdenum Alloy for Surgical
               Implant Applications (UNS R58150). ASTM International,   21.  Ashby MF, 2005, The properties of foams and lattices. Philos
               Pennsylvania.                                      Trans A Math Phys Eng Sci., 364: 15–30.
            11.  ASTM, (n.d.), F1813-21-standard Specification for Wrought      https://doi.org/10.1098/RSTA.2005.1678
               Titanium-12Molybdenum-6Zirconium-2Iron Alloy for   22.  Benedetti M, du Plessis A, Ritchie RO,  et al., 2021,
               Surgical  Implant  (UNS  R58120).  ASTM  International,   Architected cellular materials: A review on their mechanical
               Pennsylvania.                                      properties towards fatigue-tolerant design and fabrication.
            12.  Polozov I, Sufiiarov A, Popovich A, et al., 2018, Synthesis   Mater Sci Eng R Rep, 144: 100606.
               of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from      https://doi.org/10.1016/j.mser.2021.100606
               elemental powders using powder-bed fusion additive
               manufacturing. J Alloys Compd, 763: 436–445.    23.  Zadpoor AA, 2019, Mechanical performance of additively
                                                                  manufactured meta-biomaterials. Acta Biomater, 85: 41–59.
               https://doi.org/10.1016/j.jallcom.2018.05.325
                                                                  https://doi.org/10.1016/j.actbio.2018.12.038
            13.  Bolzoni L, Ruiz-Navas EM, Gordo E, 2014, On the
               microstructure and properties of the Ti-3Al-2.5V alloy   24.  Kolken HM, Janbaz S, Leeflang SM, et al., 2018, Rationally
               obtained by powder metallurgy. In: TMS 2014 143  Annual   designed meta-implants:  A  combination of  auxetic  and
                                                    rd
               Meeting and Exhibiton. Springer, Champaign. p121–128.   conventional meta-biomaterials. Mater Horizons, 5: 28–35.
               https://doi.org/10.1007/978-3-319-48237-8_17       https://doi.org/10.1039/c7mh00699c
                                                               25.  Albertini F, Dirrenberger J, Sollogoub C,  et al., 2021,
            14.  Brunke F, Siemers C, Rösler J, 2020, Second-generation
               titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A comparison   Experimental and computational analysis of the mechanical
               of the mechanical properties for implant applications,   properties of composite auxetic lattice structures.  Addit
               MATEC Web Conf. 321: 05006.                        Manuf, 47: 102351.
                                                                  https://doi.org/10.1016/j.addma.2021.102351
               https://doi.org/10.1051/matecconf/202032105006
                                                               26.  Kolken HM, Garcia AF, Du Plessis A, et al., 2021, Fatigue
            15.  Duan R, Li S, Cai B, et al., 2021, A high strength and low
               modulus metastable  β Ti-12Mo-6Zr-2Fe alloy fabricated   performance of auxetic meta-biomaterials.  Acta Biomater,
               by laser powder bed fusion in-situ alloying. Addit Manuf,   126: 511–523.
               37: 101708.                                        https://doi.org/10.1016/j.actbio.2021.03.015


            Volume 9 Issue 4 (2023)                        463                          https://doi.org/10.18063/ijb.728
   466   467   468   469   470   471   472   473   474   475   476