Page 471 - IJB-9-4
P. 471
International Journal of Bioprinting β-Ti21S auxetic FGPs produced by laser powder bed fusion
https://doi.org/10.1016/j.biomaterials.2016.01.012 https://doi.org/10.1016/j.addma.2020.101708
5. International Organization for Standardization, 1999, ISO 16. Claros CA, Campanelli LC, Jorge AM, et al., 2021, Corrosion
5832-2:1999, Implants for Surgery-metallic Materials- behaviour of biomedical β-titanium alloys with the surface-
Part 2: Unalloyed titanium. International Organization for modified by chemical etching and electrochemical methods.
Standardization, Geneva, Switzerland. p3. Corros Sci, 188: 109544.
6. International Organization for Standardization, (n.d.), ISO https://doi.org/10.1016/j.corsci.2021.109544
5832-14:2019-implants for Surgery-metallic Materials- 17. Macias-Sifuentes MA, Xu C, Sanchez-Mata O, et al., 2021,
Part 14: Wrought Titanium 15-molybdenum 5-zirconium Microstructure and mechanical properties of β-21S Ti alloy
3-aluminium alloy. International Organization for fabricated through laser powder bed fusion. Prog Addit
Standardization, Geneva, Switzerland. Manuf, 6: 417–430.
7. Materials Properties Handbook, (n.d.), Titanium Alloys. https://doi.org/10.1007/s40964-021-00181-7
ASM International, Almere, Netherlands. Available from:
https://www.asminternational.org/materials-resources/ 18. Pellizzari M, Jam A, Tschon M, et al., 2020, A 3D-printed
results/-/journal_content/56/10192/06005g/publication ultra-low young’s modulus β-Ti alloy for biomedical
[Last accessed on 2022 Jul 13]. applications. Materials (Basel), 13: 2792.
8. ASTM, (n.d.), F1295-16-standard Specification for Wrought https://doi.org/10.3390/ma13122792
Titanium-6Aluminum-7Niobium Alloy for Surgical 19. Jam A, du Plessis A, Lora C, et al., Manufacturability of
Implant Applications (UNS R56700). ASTM International, lattice structures fabricated by laser powder bed fusion:
Pennsylvania. A novel biomedical application of the beta Ti-21S alloy.
9. ASTM, (n.d.), F3046-21-standard Specification for Wrought Addit Manuf, 50: 102556.
Titanium-3Aluminum-2.5Vanadium Alloy for Surgical https://doi.org/10.1016/J.ADDMA.2021.102556
Implant Applications (UNS R56320). ASTM International,
Pennsylvania. 20. Gibson LJ, Ashby MF, Harley BA, (n.d.), Cellular Materials
in Nature and Medicine. Cambridge University Press,
10. ASTM, (n.d.), F2066-18-standard Specification for Cambridge, United Kingdom. p309.
Wrought Titanium-15 Molybdenum Alloy for Surgical
Implant Applications (UNS R58150). ASTM International, 21. Ashby MF, 2005, The properties of foams and lattices. Philos
Pennsylvania. Trans A Math Phys Eng Sci., 364: 15–30.
11. ASTM, (n.d.), F1813-21-standard Specification for Wrought https://doi.org/10.1098/RSTA.2005.1678
Titanium-12Molybdenum-6Zirconium-2Iron Alloy for 22. Benedetti M, du Plessis A, Ritchie RO, et al., 2021,
Surgical Implant (UNS R58120). ASTM International, Architected cellular materials: A review on their mechanical
Pennsylvania. properties towards fatigue-tolerant design and fabrication.
12. Polozov I, Sufiiarov A, Popovich A, et al., 2018, Synthesis Mater Sci Eng R Rep, 144: 100606.
of Ti-5Al, Ti-6Al-7Nb, and Ti-22Al-25Nb alloys from https://doi.org/10.1016/j.mser.2021.100606
elemental powders using powder-bed fusion additive
manufacturing. J Alloys Compd, 763: 436–445. 23. Zadpoor AA, 2019, Mechanical performance of additively
manufactured meta-biomaterials. Acta Biomater, 85: 41–59.
https://doi.org/10.1016/j.jallcom.2018.05.325
https://doi.org/10.1016/j.actbio.2018.12.038
13. Bolzoni L, Ruiz-Navas EM, Gordo E, 2014, On the
microstructure and properties of the Ti-3Al-2.5V alloy 24. Kolken HM, Janbaz S, Leeflang SM, et al., 2018, Rationally
obtained by powder metallurgy. In: TMS 2014 143 Annual designed meta-implants: A combination of auxetic and
rd
Meeting and Exhibiton. Springer, Champaign. p121–128. conventional meta-biomaterials. Mater Horizons, 5: 28–35.
https://doi.org/10.1007/978-3-319-48237-8_17 https://doi.org/10.1039/c7mh00699c
25. Albertini F, Dirrenberger J, Sollogoub C, et al., 2021,
14. Brunke F, Siemers C, Rösler J, 2020, Second-generation
titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A comparison Experimental and computational analysis of the mechanical
of the mechanical properties for implant applications, properties of composite auxetic lattice structures. Addit
MATEC Web Conf. 321: 05006. Manuf, 47: 102351.
https://doi.org/10.1016/j.addma.2021.102351
https://doi.org/10.1051/matecconf/202032105006
26. Kolken HM, Garcia AF, Du Plessis A, et al., 2021, Fatigue
15. Duan R, Li S, Cai B, et al., 2021, A high strength and low
modulus metastable β Ti-12Mo-6Zr-2Fe alloy fabricated performance of auxetic meta-biomaterials. Acta Biomater,
by laser powder bed fusion in-situ alloying. Addit Manuf, 126: 511–523.
37: 101708. https://doi.org/10.1016/j.actbio.2021.03.015
Volume 9 Issue 4 (2023) 463 https://doi.org/10.18063/ijb.728

