Page 114 - IJB-9-5
        P. 114
     International Journal of Bioprinting                         Application and prospects of 3D printable microgels
            42.   Chen Z, Lv Z, Zhang Z, et al., 2021, Advanced microfluidic   53.   Bahney CS, Lujan TJ, Hsu CW,  et al., 2011, Visible
               devices  for  fabricating  multi-structural  hydrogel  light photoinitiation of mesenchymal stem cell-laden
               microsphere. Exploration, 1:20210036.              bioresponsive hydrogels. Eur Cell Mater, 22:43–55.
               https://doi.org/10.1002/EXP.20210036            54.   Gansau J, Kelly L, Buckley CT, 2018, Influence of key
                                                                  processing  parameters  and  seeding  density  effects
            43.   Chung CHY, Cui B, Song R, et al., 2019, Scalable production
               of  monodisperse  functional  microspheres  by  multilayer   of microencapsulated chondrocytes fabricated using
               parallelization of high aspect ratio microfluidic channels.   electrohydrodynamic spraying. Biofabrication, 10:035011.
               Micromachines (Basel), 10:592.                     https://doi.org/10.1088/1758-5090/aacb95
               https://doi.org/10.3390/mi10090592              55.   Naqvi SM, Vedicherla S, Gansau J, et al., 2016, Living cell
            44.   Headen DM, García JR, García AJ, 2018, Parallel droplet   factories: Electrosprayed microcapsules and microcarriers
               microfluidics  for high  throughput  cell  encapsulation  and   for minimally invasive delivery. Adv Mater, 28:5662–5671.
               synthetic microgel generation. Microsyst Nanoeng, 4:1–9.  https://doi.org/10.1002/adma.201503598
               https://doi.org/10.1038/micronano.2017.76       56.   Sinclair A, O’Kelly MB, Bai T,  et al., 2018, Self-healing
            45.   Mao  AS,  Shin J-W,  Utech S,  et al.,  2017,  Deterministic   zwitterionic microgels as a versatile platform for malleable
               encapsulation of single cells in thin tunable microgels   cell  constructs  and  injectable  therapies.  Adv Mater,  30:
               for niche modeling  and therapeutic delivery.  Nat Mater,   e1803087.
               16:236–243.                                        https://doi.org/10.1002/adma.201803087
               https://doi.org/10.1038/nmat4781                57.   Hinton TJ, Jallerat Q, Palchesko RN,  et al., 2015, Three-
            46.   Schuler F, Schwemmer F, Trotter M, et al., 2015, Centrifugal   dimensional printing of complex biological structures by
               step  emulsification  applied  for absolute  quantification  of   freeform reversible embedding of suspended hydrogels. Sci
               nucleic acids by digital droplet RPA. Lab Chip, 15:2759–2766.  Adv, 1:e1500758.
               https://doi.org/10.1039/C5LC00291E                 https://doi.org/10.1126/sciadv.1500758
            47.   Azimi-Boulali J, Madadelahi M, Madou MJ,  et al., 2020,   58.   Ding A, Jeon O, Cleveland D, et al., 2022, Jammed micro-
               Droplet and particle generation on centrifugal microfluidic   flake hydrogel for four-dimensional living cell bioprinting.
               platforms: A review. Micromachines, 11:603.        Adv Mater, 34: e2109394.
               https://doi.org/10.3390/mi11060603                 https://doi.org/10.1002/adma.202109394
            48.   Kim S, Yim S-G, Chandrasekharan A, et al., 2020, On-site   59.   Xin  S,  Wyman  OM,  Alge  DL,  2018,  Assembly  of  PEG
               fabrication of injectable 131I-labeled microgels for local   microgels into porous cell-instructive 3D scaffolds via thiol-
               radiotherapy. J Controlled Release, 322:337–345.   ene click chemistry. Adv Healthc Mater, 7:e1800160.
               https://doi.org/10.1016/j.jconrel.2020.03.046      https://doi.org/10.1002/adhm.201800160
            49.   Agarwal R, Singh V, Jurney P, et al., 2012, Scalable imprinting   60.   Riley L, Schirmer L, Segura T, 2019, Granular hydrogels:
               of shape-specific polymeric nanocarriers using a release   Emergent properties of jammed hydrogel microparticles
               layer of switchable water solubility. ACS Nano, 6:2524–2531.  and their applications in tissue repair and regeneration. Curr
                                                                  Opin Biotechnol, 60:1–8.
               https://doi.org/10.1021/nn2049152
                                                                  https://doi.org/10.1016/j.copbio.2018.11.001
            50.   Li M, Mei J, Friend J, et al., 2022, Acousto-photolithography
               for programmable shape deformation of composite hydrogel   61.   Highley CB, Song KH, Daly AC,  et al., 2018, Jammed
               sheets. Small, 18: e2204288.                       microgel inks for 3D printing applications. Adv Sci (Weinh),
                                                                  6:1801076.
               https://doi.org/10.1002/smll.202204288
                                                                  https://doi.org/10.1002/advs.201801076
            51.   Helgeson  ME,  Chapin  SC,  Doyle  PS,  2011,  Hydrogel
               microparticles from lithographic processes: Novel materials   62.   Yang J, Zhang YS, Yue K, et al., 2017, Cell-laden hydrogels
               for  fundamental  and applied colloid science.  Curr Opin   for osteochondral and cartilage tissue engineering.  Acta
               Colloid Interface Sci, 16:106–117.                 Biomater, 57:1–25.
               https://doi.org/10.1016/j.cocis.2011.01.005        https://doi.org/10.1016/j.actbio.2017.01.036
            52.   Gramlich WM, Kim IL, Burdick JA, 2013, Synthesis and   63.   Griffin DR, Weaver WM, Scumpia P, et al., 2015, Accelerated
               orthogonal photopatterning of hyaluronic acid hydrogels   wound healing by injectable microporous gel scaffolds
               with thiol-norbornene chemistry. Biomaterials, 34:10.1016/j.  assembled from annealed building blocks.  Nat  Mater,
               biomaterials.2013.08.089.                          14:737–744.
               https://doi.org/10.1016/j.biomaterials.2013.08.089  https://doi.org/10.1038/nmat4294
            Volume 9 Issue 5 (2023)                        106                         https://doi.org/10.18063/ijb.753
     	
