Page 114 - IJB-9-5
P. 114
International Journal of Bioprinting Application and prospects of 3D printable microgels
42. Chen Z, Lv Z, Zhang Z, et al., 2021, Advanced microfluidic 53. Bahney CS, Lujan TJ, Hsu CW, et al., 2011, Visible
devices for fabricating multi-structural hydrogel light photoinitiation of mesenchymal stem cell-laden
microsphere. Exploration, 1:20210036. bioresponsive hydrogels. Eur Cell Mater, 22:43–55.
https://doi.org/10.1002/EXP.20210036 54. Gansau J, Kelly L, Buckley CT, 2018, Influence of key
processing parameters and seeding density effects
43. Chung CHY, Cui B, Song R, et al., 2019, Scalable production
of monodisperse functional microspheres by multilayer of microencapsulated chondrocytes fabricated using
parallelization of high aspect ratio microfluidic channels. electrohydrodynamic spraying. Biofabrication, 10:035011.
Micromachines (Basel), 10:592. https://doi.org/10.1088/1758-5090/aacb95
https://doi.org/10.3390/mi10090592 55. Naqvi SM, Vedicherla S, Gansau J, et al., 2016, Living cell
44. Headen DM, García JR, García AJ, 2018, Parallel droplet factories: Electrosprayed microcapsules and microcarriers
microfluidics for high throughput cell encapsulation and for minimally invasive delivery. Adv Mater, 28:5662–5671.
synthetic microgel generation. Microsyst Nanoeng, 4:1–9. https://doi.org/10.1002/adma.201503598
https://doi.org/10.1038/micronano.2017.76 56. Sinclair A, O’Kelly MB, Bai T, et al., 2018, Self-healing
45. Mao AS, Shin J-W, Utech S, et al., 2017, Deterministic zwitterionic microgels as a versatile platform for malleable
encapsulation of single cells in thin tunable microgels cell constructs and injectable therapies. Adv Mater, 30:
for niche modeling and therapeutic delivery. Nat Mater, e1803087.
16:236–243. https://doi.org/10.1002/adma.201803087
https://doi.org/10.1038/nmat4781 57. Hinton TJ, Jallerat Q, Palchesko RN, et al., 2015, Three-
46. Schuler F, Schwemmer F, Trotter M, et al., 2015, Centrifugal dimensional printing of complex biological structures by
step emulsification applied for absolute quantification of freeform reversible embedding of suspended hydrogels. Sci
nucleic acids by digital droplet RPA. Lab Chip, 15:2759–2766. Adv, 1:e1500758.
https://doi.org/10.1039/C5LC00291E https://doi.org/10.1126/sciadv.1500758
47. Azimi-Boulali J, Madadelahi M, Madou MJ, et al., 2020, 58. Ding A, Jeon O, Cleveland D, et al., 2022, Jammed micro-
Droplet and particle generation on centrifugal microfluidic flake hydrogel for four-dimensional living cell bioprinting.
platforms: A review. Micromachines, 11:603. Adv Mater, 34: e2109394.
https://doi.org/10.3390/mi11060603 https://doi.org/10.1002/adma.202109394
48. Kim S, Yim S-G, Chandrasekharan A, et al., 2020, On-site 59. Xin S, Wyman OM, Alge DL, 2018, Assembly of PEG
fabrication of injectable 131I-labeled microgels for local microgels into porous cell-instructive 3D scaffolds via thiol-
radiotherapy. J Controlled Release, 322:337–345. ene click chemistry. Adv Healthc Mater, 7:e1800160.
https://doi.org/10.1016/j.jconrel.2020.03.046 https://doi.org/10.1002/adhm.201800160
49. Agarwal R, Singh V, Jurney P, et al., 2012, Scalable imprinting 60. Riley L, Schirmer L, Segura T, 2019, Granular hydrogels:
of shape-specific polymeric nanocarriers using a release Emergent properties of jammed hydrogel microparticles
layer of switchable water solubility. ACS Nano, 6:2524–2531. and their applications in tissue repair and regeneration. Curr
Opin Biotechnol, 60:1–8.
https://doi.org/10.1021/nn2049152
https://doi.org/10.1016/j.copbio.2018.11.001
50. Li M, Mei J, Friend J, et al., 2022, Acousto-photolithography
for programmable shape deformation of composite hydrogel 61. Highley CB, Song KH, Daly AC, et al., 2018, Jammed
sheets. Small, 18: e2204288. microgel inks for 3D printing applications. Adv Sci (Weinh),
6:1801076.
https://doi.org/10.1002/smll.202204288
https://doi.org/10.1002/advs.201801076
51. Helgeson ME, Chapin SC, Doyle PS, 2011, Hydrogel
microparticles from lithographic processes: Novel materials 62. Yang J, Zhang YS, Yue K, et al., 2017, Cell-laden hydrogels
for fundamental and applied colloid science. Curr Opin for osteochondral and cartilage tissue engineering. Acta
Colloid Interface Sci, 16:106–117. Biomater, 57:1–25.
https://doi.org/10.1016/j.cocis.2011.01.005 https://doi.org/10.1016/j.actbio.2017.01.036
52. Gramlich WM, Kim IL, Burdick JA, 2013, Synthesis and 63. Griffin DR, Weaver WM, Scumpia P, et al., 2015, Accelerated
orthogonal photopatterning of hyaluronic acid hydrogels wound healing by injectable microporous gel scaffolds
with thiol-norbornene chemistry. Biomaterials, 34:10.1016/j. assembled from annealed building blocks. Nat Mater,
biomaterials.2013.08.089. 14:737–744.
https://doi.org/10.1016/j.biomaterials.2013.08.089 https://doi.org/10.1038/nmat4294
Volume 9 Issue 5 (2023) 106 https://doi.org/10.18063/ijb.753

