Page 117 - IJB-9-5
P. 117

International Journal of Bioprinting                         Application and prospects of 3D printable microgels



            111.   Morgan FLC, Moroni L, Baker MB, 2020, Dynamic bioinks   printing-then-gelation biofabrication.  Mater Sci Eng C,
                to advance bioprinting. Adv Healthc Mater, 9:1901798.  80:313–325.
                https://doi.org/10.1002/adhm.201901798             https://doi.org/10.1016/j.msec.2017.05.144
            112.   Tu Y, Chen N, Li C, et al., 2019, Advances in injectable self-  123.   Compaan AM, Song K, Chai W, et al., 2020, Cross-linkable
                healing biomedical hydrogels. Acta Biomater, 90:1–20.  microgel composite matrix bath for embedded bioprinting
                                                                   of  perfusable  tissue  constructs  and sculpting  of  solid
                https://doi.org/10.1016/j.actbio.2019.03.057       objects. ACS Appl Mater Interfaces, 12:7855–7868.
            113.   Feng Q,  Li D, Li Q,  et  al., 2022,  Assembling microgels   https://doi.org/10.1021/acsami.9b15451
                via dynamic cross-linking reaction improves printability,
                microporosity, tissue-adhesion, and self-healing of   124.   Bhattacharjee T, Zehnder SM, Rowe KG,  et  al., 2015,
                microgel bioink for extrusion bioprinting. ACS Appl Mater   Writing in the granular gel medium. Sci Adv, 1:e1500655.
                Interfaces, 14:15653–15666.                        https://doi.org/10.1126/sciadv.1500655
                https://doi.org/10.1021/acsami.2c01295         125.   Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid casting
                                                                   of patterned vascular networks for perfusable engineered
            114.   Daley WP, Peters SB, Larsen M, 2008, Extracellular matrix
                dynamics in development and regenerative medicine. J Cell   three-dimensional tissues. Nat Mater, 11:768–774.
                Sci, 121:255–264.                                  https://doi.org/10.1038/nmat3357
                https://doi.org/10.1242/jcs.006064             126.   Cho EC, Kim J-W, Fernandez-Nieves A, et al., 2008, Highly
                                                                   responsive hydrogel scaffolds formed by three-dimensional
            115.   Goor OJGM, Hendrikse SIS, Dankers PYW, et al., 2017,   organization of microgel nanoparticles. Nano Lett, 8:168–172.
                From  supramolecular  polymers  to  multi-component
                biomaterials. Chem Soc Rev, 46:6621–6637.          https://doi.org/10.1021/nl072346e
                https://doi.org/10.1039/c7cs00564d             127.   Debord JD, Eustis S, Debord SB, et al., 2002, Color-tunable
                                                                   colloidal crystals from soft hydrogel nanoparticles.  Adv
            116.   Jk M, G O, Vm W, 2014, Extracellular matrix assembly: a   Mater, 14:658–662.
                multiscale deconstruction. Nat Rev Mol Cell Biol, 15:771–785.
                                                                   https://doi.org/10.1002/1521-4095(20020503)14:9<658::
                https://doi.org/10.1038/nrm3902                    AID-ADMA658>3.0.CO;2-3
            117.   Costantini M, Colosi C, Święszkowski W,  et al., 2018,   128.   Dimitriou CJ, Ewoldt RH, McKinley GH, 2013, Describing
                Co-axial wet-spinning in 3D bioprinting: State of the   and prescribing the constitutive response of yield stress
                art and future perspective of microfluidic integration.   fluids using large amplitude oscillatory shear stress
                Biofabrication, 11:012001.                         (LAOStress). J Rheol, 57:27–70.
                https://doi.org/10.1088/1758-5090/aae605           https://doi.org/10.1122/1.4754023
            118.   Khalil  S,  Sun  W, 2009,  Bioprinting  endothelial  cells   129.   Zhang YS, Xia Y, 2015, Multiple facets for extracellular
                with alginate for 3D tissue constructs.  J Biomech Eng,   matrix mimicking in regenerative medicine. Nanomedicine
                131:111002.                                        (Lond), 10:689–692.
                https://doi.org/10.1115/1.3128729                  https://doi.org/10.2217/nnm.15.10
            119.   Rajaram A, Schreyer D, Chen D, 2014, Bioplotting alginate/  130.   Place ES, Evans ND, Stevens MM, 2009, Complexity in
                hyaluronic acid hydrogel scaffolds with structural integrity   biomaterials for tissue engineering. Nat Mater, 8:457–470.
                and preserved schwann cell viability. 3D Print Addit Manuf,   https://doi.org/10.1038/nmat2441
                1:194–203.
                                                               131.   Rice JJ, Martino MM, De Laporte L, et al., 2013, Engineering
                https://doi.org/10.1089/3dp.2014.0006              the regenerative microenvironment with biomaterials. Adv
            120.   Rocca M, Fragasso A, Liu W,  et al., 2018, Embedded   Healthc Mater, 2:57–71.
                multimaterial  extrusion  bioprinting.  SLAS Technol,   https://doi.org/10.1002/adhm.201200197
                23:154–163.
                                                               132.   Harre U, Schett G, 2017, Cellular and molecular pathways
                https://doi.org/10.1177/2472630317742071           of structural damage in rheumatoid arthritis.  Semin
            121.   Cui X, Li J, Hartanto Y, et al., 2020, Advances in extrusion   Immunopathol, 39:355–363.
                3D bioprinting: A focus on multicomponent hydrogel-  https://doi.org/10.1007/s00281-017-0634-0
                based bioinks. Adv Healthc Mater, 9:e1901648.
                                                               133.   Latourte A, Kloppenburg M, Richette P, 2020, Emerging
                https://doi.org/10.1002/adhm.201901648             pharmaceutical therapies for osteoarthritis.  Nat Rev
                                                                   Rheumatol, 16:673–688.
            122.   Jin Y, Chai W, Huang Y, 2017, Printability study of hydrogel
                solution  extrusion  in  nanoclay  yield-stress  bath  during   https://doi.org/10.1038/s41584-020-00518-6


            Volume 9 Issue 5 (2023)                        109                         https://doi.org/10.18063/ijb.753
   112   113   114   115   116   117   118   119   120   121   122