Page 117 - IJB-9-5
P. 117
International Journal of Bioprinting Application and prospects of 3D printable microgels
111. Morgan FLC, Moroni L, Baker MB, 2020, Dynamic bioinks printing-then-gelation biofabrication. Mater Sci Eng C,
to advance bioprinting. Adv Healthc Mater, 9:1901798. 80:313–325.
https://doi.org/10.1002/adhm.201901798 https://doi.org/10.1016/j.msec.2017.05.144
112. Tu Y, Chen N, Li C, et al., 2019, Advances in injectable self- 123. Compaan AM, Song K, Chai W, et al., 2020, Cross-linkable
healing biomedical hydrogels. Acta Biomater, 90:1–20. microgel composite matrix bath for embedded bioprinting
of perfusable tissue constructs and sculpting of solid
https://doi.org/10.1016/j.actbio.2019.03.057 objects. ACS Appl Mater Interfaces, 12:7855–7868.
113. Feng Q, Li D, Li Q, et al., 2022, Assembling microgels https://doi.org/10.1021/acsami.9b15451
via dynamic cross-linking reaction improves printability,
microporosity, tissue-adhesion, and self-healing of 124. Bhattacharjee T, Zehnder SM, Rowe KG, et al., 2015,
microgel bioink for extrusion bioprinting. ACS Appl Mater Writing in the granular gel medium. Sci Adv, 1:e1500655.
Interfaces, 14:15653–15666. https://doi.org/10.1126/sciadv.1500655
https://doi.org/10.1021/acsami.2c01295 125. Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid casting
of patterned vascular networks for perfusable engineered
114. Daley WP, Peters SB, Larsen M, 2008, Extracellular matrix
dynamics in development and regenerative medicine. J Cell three-dimensional tissues. Nat Mater, 11:768–774.
Sci, 121:255–264. https://doi.org/10.1038/nmat3357
https://doi.org/10.1242/jcs.006064 126. Cho EC, Kim J-W, Fernandez-Nieves A, et al., 2008, Highly
responsive hydrogel scaffolds formed by three-dimensional
115. Goor OJGM, Hendrikse SIS, Dankers PYW, et al., 2017, organization of microgel nanoparticles. Nano Lett, 8:168–172.
From supramolecular polymers to multi-component
biomaterials. Chem Soc Rev, 46:6621–6637. https://doi.org/10.1021/nl072346e
https://doi.org/10.1039/c7cs00564d 127. Debord JD, Eustis S, Debord SB, et al., 2002, Color-tunable
colloidal crystals from soft hydrogel nanoparticles. Adv
116. Jk M, G O, Vm W, 2014, Extracellular matrix assembly: a Mater, 14:658–662.
multiscale deconstruction. Nat Rev Mol Cell Biol, 15:771–785.
https://doi.org/10.1002/1521-4095(20020503)14:9<658::
https://doi.org/10.1038/nrm3902 AID-ADMA658>3.0.CO;2-3
117. Costantini M, Colosi C, Święszkowski W, et al., 2018, 128. Dimitriou CJ, Ewoldt RH, McKinley GH, 2013, Describing
Co-axial wet-spinning in 3D bioprinting: State of the and prescribing the constitutive response of yield stress
art and future perspective of microfluidic integration. fluids using large amplitude oscillatory shear stress
Biofabrication, 11:012001. (LAOStress). J Rheol, 57:27–70.
https://doi.org/10.1088/1758-5090/aae605 https://doi.org/10.1122/1.4754023
118. Khalil S, Sun W, 2009, Bioprinting endothelial cells 129. Zhang YS, Xia Y, 2015, Multiple facets for extracellular
with alginate for 3D tissue constructs. J Biomech Eng, matrix mimicking in regenerative medicine. Nanomedicine
131:111002. (Lond), 10:689–692.
https://doi.org/10.1115/1.3128729 https://doi.org/10.2217/nnm.15.10
119. Rajaram A, Schreyer D, Chen D, 2014, Bioplotting alginate/ 130. Place ES, Evans ND, Stevens MM, 2009, Complexity in
hyaluronic acid hydrogel scaffolds with structural integrity biomaterials for tissue engineering. Nat Mater, 8:457–470.
and preserved schwann cell viability. 3D Print Addit Manuf, https://doi.org/10.1038/nmat2441
1:194–203.
131. Rice JJ, Martino MM, De Laporte L, et al., 2013, Engineering
https://doi.org/10.1089/3dp.2014.0006 the regenerative microenvironment with biomaterials. Adv
120. Rocca M, Fragasso A, Liu W, et al., 2018, Embedded Healthc Mater, 2:57–71.
multimaterial extrusion bioprinting. SLAS Technol, https://doi.org/10.1002/adhm.201200197
23:154–163.
132. Harre U, Schett G, 2017, Cellular and molecular pathways
https://doi.org/10.1177/2472630317742071 of structural damage in rheumatoid arthritis. Semin
121. Cui X, Li J, Hartanto Y, et al., 2020, Advances in extrusion Immunopathol, 39:355–363.
3D bioprinting: A focus on multicomponent hydrogel- https://doi.org/10.1007/s00281-017-0634-0
based bioinks. Adv Healthc Mater, 9:e1901648.
133. Latourte A, Kloppenburg M, Richette P, 2020, Emerging
https://doi.org/10.1002/adhm.201901648 pharmaceutical therapies for osteoarthritis. Nat Rev
Rheumatol, 16:673–688.
122. Jin Y, Chai W, Huang Y, 2017, Printability study of hydrogel
solution extrusion in nanoclay yield-stress bath during https://doi.org/10.1038/s41584-020-00518-6
Volume 9 Issue 5 (2023) 109 https://doi.org/10.18063/ijb.753

