Page 115 - IJB-9-5
P. 115
International Journal of Bioprinting Application and prospects of 3D printable microgels
64. Song K, Ren B, Zhai Y, et al., 2021, Effects of transglutaminase 76. Gurkan UA, Tasoglu S, Kavaz D, et al., 2012, Emerging
cross-linking process on printability of gelatin microgel- technologies for assembly of microscale hydrogels. Adv
gelatin solution composite bioink. Biofabrication, 14. Healthc Mater, 1:149–158.
https://doi.org/10.1088/1758-5090/ac3d75 https://doi.org/10.1002/adhm.201200011
65. Sheikhi A, de Rutte J, Haghniaz R, et al., 2019, Microfluidic- 77. Inamdar NK, Borenstein JT, 2011, Microfluidic cell culture
enabled bottom-up hydrogels from annealable naturally- models for tissue engineering. Curr Opin Biotechnol,
derived protein microbeads. Biomaterials, 192:560–568. 22:681–689.
https://doi.org/10.1016/j.biomaterials.2018.10.040 https://doi.org/10.1016/j.copbio.2011.05.512
66. Caldwell AS, Campbell GT, Shekiro KMT, et al., 2017, Clickable 78. Du Y, Lo E, Ali S, et al., 2008, Directed assembly of cell-laden
microgel scaffolds as platforms for 3D cell encapsulation.
Adv Healthc Mater, 6:10.1002/adhm.201700254. microgels for fabrication of 3D tissue constructs. Proc Natl
Acad Sci U S A, 105:9522.
https://doi.org/10.1002/adhm.201700254
https://doi.org/10.1073/pnas.0801866105
67. Xin S, Chimene D, Garza JE, et al., 2019, Clickable PEG
hydrogel microspheres as building blocks for 3D bioprinting. 79. Zamanian B, Masaeli M, Nichol JW, et al., 2010, Interface-
Biomater Sci, 7:1179–1187. directed self-assembly of cell-laden microgels. Small,
6:937–944.
https://doi.org/10.1039/c8bm01286e
https://doi.org/10.1002/smll.200902326
68. Li F, Truong VX, Fisch P, et al., 2018, Cartilage tissue
formation through assembly of microgels containing 80. Fernandez JG, Khademhosseini A, 2010, Micro-masonry:
mesenchymal stem cells. Acta Biomater, 77:48–62. Construction of 3D structures by microscale self-assembly.
Adv Mater, 22:2538–2541.
https://doi.org/10.1016/j.actbio.2018.07.015
69. Jiang W, Li M, Chen Z, et al., 2016, Cell-laden microfluidic https://doi.org/10.1002/adma.200903893
microgels for tissue regeneration. Lab Chip, 16:4482–4506. 81. Xu F, Wu CM, Rengarajan V, et al., 2011, Three-dimensional
https://doi.org/10.1039/c6lc01193d magnetic assembly of microscale hydrogels. Adv Mater,
23:4254–4260.
70. Harada A, Kobayashi R, Takashima Y, et al., 2011,
Macroscopic self-assembly through molecular recognition. https://doi.org/10.1002/adma.201101962
Nat Chem, 3:34–37. 82. Tasoglu S, Yu CH, Gungordu HI, et al., 2014, Guided and
https://doi.org/10.1038/nchem.893 magnetic self-assembly of tunable magnetoceptive gels. Nat
Commun, 5:4702.
71. Hsu R, Chen P, Fang J, et al., 2019, Adaptable microporous
hydrogels of propagating NGF‐gradient by injectable https://doi.org/10.1038/ncomms5702
building blocks for accelerated axonal outgrowth. Adv Sci
(Weinh), 6:1900520. 83. Xu F, Finley TD, Turkaydin M, et al., 2011, The assembly
of cell-encapsulating microscale hydrogels using acoustic
https://doi.org/10.1002/advs.201900520 waves. Biomaterials, 32:7847–7855.
72. Han YL, Yang Y, Liu S, et al., 2013, Directed self-assembly https://doi.org/10.1016/j.biomaterials.2011.07.010
of microscale hydrogels by electrostatic interaction.
Biofabrication, 5:035004. 84. Groll J, Burdick JA, Cho D-W, et al., 2018, A definition
of bioinks and their distinction from biomaterial inks.
https://doi.org/10.1088/1758-5082/5/3/035004
Biofabrication, 11:013001.
73. Li CY, Wood DK, Hsu CM, et al., 2011, DNA-templated
assembly of droplet-derived PEG microtissues. Lab Chip, https://doi.org/10.1088/1758-5090/aaec52
11:2967–2975. 85. Parak A, Pradeep P, du Toit LC, et al., 2019, Functionalizing
https://doi.org/10.1039/c1lc20318e bioinks for 3D bioprinting applications. Drug Discov Today,
24:198–205.
74. Hu Y, Mao AS, Desai RM, et al., 2017, Controlled self-
assembly of alginate microgels by rapidly binding molecule https://doi.org/10.1016/j.drudis.2018.09.012
pairs. Lab Chip, 17:2481–2490. 86. Skardal A, 2018, Perspective: “Universal” bioink
https://doi.org/10.1039/c7lc00500h technology for advancing extrusion bioprinting-based
biomanufacturing. Bioprinting, 10: e00026.
75. Matsunaga YT, Morimoto Y, Takeuchi S, 2011, Molding
cell beads for rapid construction of macroscopic 3D tissue https://doi.org/10.1016/j.bprint.2018.e00026
architecture. Adv Mater, 23:H90–H94.
87. Le LV, Mohindra P, Fang Q, et al., 2018, Injectable hyaluronic
https://doi.org/10.1002/adma.201004375 acid based microrods provide local micromechanical
Volume 9 Issue 5 (2023) 107 https://doi.org/10.18063/ijb.753

