Page 115 - IJB-9-5
P. 115

International Journal of Bioprinting                         Application and prospects of 3D printable microgels



            64.   Song K, Ren B, Zhai Y, et al., 2021, Effects of transglutaminase   76.   Gurkan UA, Tasoglu S, Kavaz D,  et al., 2012, Emerging
               cross-linking process on printability of gelatin microgel-  technologies for assembly of microscale hydrogels.  Adv
               gelatin solution composite bioink. Biofabrication, 14.  Healthc Mater, 1:149–158.
               https://doi.org/10.1088/1758-5090/ac3d75           https://doi.org/10.1002/adhm.201200011
            65.   Sheikhi A, de Rutte J, Haghniaz R, et al., 2019, Microfluidic-  77.   Inamdar NK, Borenstein JT, 2011, Microfluidic cell culture
               enabled bottom-up hydrogels from annealable naturally-  models for tissue engineering.  Curr  Opin Biotechnol,
               derived protein microbeads. Biomaterials, 192:560–568.  22:681–689.
               https://doi.org/10.1016/j.biomaterials.2018.10.040  https://doi.org/10.1016/j.copbio.2011.05.512
            66.   Caldwell AS, Campbell GT, Shekiro KMT, et al., 2017, Clickable   78.   Du Y, Lo E, Ali S, et al., 2008, Directed assembly of cell-laden
               microgel scaffolds as platforms for 3D cell encapsulation.
               Adv Healthc Mater, 6:10.1002/adhm.201700254.       microgels for fabrication of 3D tissue constructs. Proc Natl
                                                                  Acad Sci U S A, 105:9522.
               https://doi.org/10.1002/adhm.201700254
                                                                  https://doi.org/10.1073/pnas.0801866105
            67.   Xin S, Chimene D, Garza JE,  et al., 2019, Clickable PEG
               hydrogel microspheres as building blocks for 3D bioprinting.   79.   Zamanian B, Masaeli M, Nichol JW, et al., 2010, Interface-
               Biomater Sci, 7:1179–1187.                         directed self-assembly of cell-laden microgels.  Small,
                                                                  6:937–944.
               https://doi.org/10.1039/c8bm01286e
                                                                  https://doi.org/10.1002/smll.200902326
            68.   Li F, Truong VX, Fisch P,  et  al., 2018, Cartilage tissue
               formation through assembly of microgels containing   80.   Fernandez JG, Khademhosseini A, 2010, Micro-masonry:
               mesenchymal stem cells. Acta Biomater, 77:48–62.   Construction of 3D structures by microscale self-assembly.
                                                                  Adv Mater, 22:2538–2541.
               https://doi.org/10.1016/j.actbio.2018.07.015
            69.   Jiang W, Li M, Chen Z, et al., 2016, Cell-laden microfluidic   https://doi.org/10.1002/adma.200903893
               microgels for tissue regeneration. Lab Chip, 16:4482–4506.  81.   Xu F, Wu CM, Rengarajan V, et al., 2011, Three-dimensional
               https://doi.org/10.1039/c6lc01193d                 magnetic assembly of microscale hydrogels.  Adv Mater,
                                                                  23:4254–4260.
            70.   Harada A, Kobayashi R, Takashima Y,  et al., 2011,
               Macroscopic self-assembly through molecular recognition.   https://doi.org/10.1002/adma.201101962
               Nat Chem, 3:34–37.                              82.   Tasoglu S, Yu CH, Gungordu HI, et al., 2014, Guided and
               https://doi.org/10.1038/nchem.893                  magnetic self-assembly of tunable magnetoceptive gels. Nat
                                                                  Commun, 5:4702.
            71.   Hsu R, Chen P, Fang J, et al., 2019, Adaptable microporous
               hydrogels of propagating NGF‐gradient by injectable   https://doi.org/10.1038/ncomms5702
               building blocks for accelerated axonal outgrowth. Adv Sci
               (Weinh), 6:1900520.                             83.   Xu F, Finley TD, Turkaydin M, et al., 2011, The assembly
                                                                  of cell-encapsulating microscale hydrogels using acoustic
               https://doi.org/10.1002/advs.201900520             waves. Biomaterials, 32:7847–7855.
            72.   Han YL, Yang Y, Liu S, et al., 2013, Directed self-assembly   https://doi.org/10.1016/j.biomaterials.2011.07.010
               of microscale hydrogels by electrostatic interaction.
               Biofabrication, 5:035004.                       84.   Groll J, Burdick JA, Cho D-W,  et al., 2018, A definition
                                                                  of bioinks and their distinction from biomaterial inks.
               https://doi.org/10.1088/1758-5082/5/3/035004
                                                                  Biofabrication, 11:013001.
            73.   Li CY, Wood DK, Hsu CM,  et al., 2011, DNA-templated
               assembly of droplet-derived PEG microtissues.  Lab Chip,   https://doi.org/10.1088/1758-5090/aaec52
               11:2967–2975.                                   85.   Parak A, Pradeep P, du Toit LC, et al., 2019, Functionalizing
               https://doi.org/10.1039/c1lc20318e                 bioinks for 3D bioprinting applications. Drug Discov Today,
                                                                  24:198–205.
            74.   Hu  Y,  Mao  AS,  Desai  RM,  et  al.,  2017,  Controlled self-
               assembly of alginate microgels by rapidly binding molecule   https://doi.org/10.1016/j.drudis.2018.09.012
               pairs. Lab Chip, 17:2481–2490.                  86.   Skardal A, 2018, Perspective: “Universal” bioink
               https://doi.org/10.1039/c7lc00500h                 technology for advancing extrusion bioprinting-based
                                                                  biomanufacturing. Bioprinting, 10: e00026.
            75.   Matsunaga  YT,  Morimoto  Y,  Takeuchi  S,  2011,  Molding
               cell beads for rapid construction of macroscopic 3D tissue   https://doi.org/10.1016/j.bprint.2018.e00026
               architecture. Adv Mater, 23:H90–H94.
                                                               87.   Le LV, Mohindra P, Fang Q, et al., 2018, Injectable hyaluronic
               https://doi.org/10.1002/adma.201004375             acid based microrods provide local micromechanical


            Volume 9 Issue 5 (2023)                        107                         https://doi.org/10.18063/ijb.753
   110   111   112   113   114   115   116   117   118   119   120