Page 113 - IJB-9-5
P. 113

International Journal of Bioprinting                         Application and prospects of 3D printable microgels



            19.   Rastogi P, Kandasubramanian B, 2019, Review of alginate-  31.   Butcher AL, Offeddu GS, Oyen ML, 2014, Nanofibrous
               based hydrogel bioprinting for application in tissue   hydrogel composites as mechanically robust tissue
               engineering. Biofabrication, 11:042001.            engineering scaffolds. Trends Biotechnol, 32:564–570.
               https://doi.org/10.1088/1758-5090/ab331e           https://doi.org/10.1016/j.tibtech.2014.09.001
            20.   Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C,  et al.,   32.   Cheng W, Zhang J, Liu J, et al., 2020, Granular hydrogels for
               2021, Semi-solid extrusion 3D printing in drug delivery   3D bioprinting applications. VIEW, 1:20200060.
               and biomedicine: Personalised solutions for healthcare
               challenges. J Control Release, 332:367–389.        https://doi.org/10.1002/VIW.20200060
               https://doi.org/10.1016/j.jconrel.2021.02.027   33.   Xin S, Deo KA, Dai J, et al., 2021, Generalizing hydrogel
                                                                  microparticles  into  a  new  class  of bioinks  for  extrusion
            21.   Zhang B, Cristescu R, Chrisey DB,  et al., 2020, Solvent-  bioprinting. Sci Adv, 7:eabk3087.
               based extrusion 3D printing for the fabrication of tissue
               engineering scaffolds. Int J Bioprint, 6:211.      https://doi.org/10.1126/sciadv.abk3087
               https://doi.org/10.18063/ijb.v6i1.211           34.   Adnan MM,  Dalod  ARM,  Balci  MH,  et al., 2018,  In  situ
                                                                  synthesis of hybrid inorganic–polymer nanocomposites.
            22.   Panwar A, Tan LP, 2016, Current status of bioinks for micro-
               extrusion-based 3D bioprinting. Molecules, 21:685.  Polymers (Basel), 10:1129.
               https://doi.org/10.3390/molecules21060685          https://doi.org/10.3390/polym10101129
            23.   Ji S, Guvendiren M, 2017, Recent advances in bioink design   35.   Ahlfeld T, Cidonio G, Kilian D, et al., 2017, Development
               for 3D bioprinting of tissues and organs.  Front Bioeng   of a clay based bioink for 3D cell printing for skeletal
               Biotechnol, 5.                                     application. Biofabrication, 9:034103.
               https://www.frontiersin.org/articles/10.3389/fbioe.2017.00023  https://doi.org/10.1088/1758-5090/aa7e96
            24.   Kyle S, Jessop ZM, Al-Sabah A,  et al., 2017, ‘Printability’   36.   Zhang H, Cong Y, Osi AR, et al., 2020, Direct 3D printed
               of candidate biomaterials for extrusion based 3D printing:   biomimetic scaffolds based on hydrogel microparticles for
               State-of-the-art. Adv Healthc Mater, 6:1700264.    cell spheroid growth. Adv Funct Mater, 30:1910573.
               https://doi.org/10.1002/adhm.201700264             https://doi.org/10.1002/adfm.201910573
            25.   Du C, Huang W, 2022, Progress and prospects of   37.   Franco CL, Price J, West JL, 2011, Development and
               nanocomposite hydrogels in bone tissue engineering.   optimization of a dual-photoinitiator, emulsion-based
               Nanocomposites, 8:102–124.                         technique for  rapid generation  of  cell-laden  hydrogel
               https://doi.org/10.1080/20550324.2022.2076025      microspheres. Acta Biomater, 7:3267–3276.
            26.   Yang Y, Jia Y, Yang Q, et al., 2023, Engineering bio-inks for   https://doi.org/10.1016/j.actbio.2011.06.011
               3D bioprinting cell mechanical microenvironment.  Int J   38.   Truong N, Lesher-Pérez SC, Kurt E, et al., 2019, Pathways
               Bioprint, 9:632.                                   governing polyethylenimine (PEI) polyplex transfection in
               https://doi.org/10.18063/ijb.v9i1.632              microporous annealed particle (MAP) scaffolds. Bioconjug
                                                                  Chem, 30:476–486.
            27.   Daly AC, Riley L, Segura T,  et al., 2020, Hydrogel
               microparticles for biomedical applications. Nat Rev Mater,   https://doi.org/10.1021/acs.bioconjchem.8b00696
               5:20–43.
                                                               39.   Pittermannová  A,  Ruberová  Z,  Zadražil  A,  et al.,
               https://doi.org/10.1038/s41578-019-0148-6          2016, Microfluidic fabrication of composite hydrogel
                                                                  microparticles in the size range of blood cells.  RSC Adv,
            28.   Feng Q, Li D, Li Q, et al., 2022, Microgel assembly: Fabrication,
               characteristics and application in tissue engineering and   6:103532–103540.
               regenerative medicine. Bioact Mater, 9:105–119.    https://doi.org/10.1039/C6RA23003B
               https://doi.org/10.1016/j.bioactmat.2021.07.020  40.   Nisisako T, Torii T, 2008, Microfluidic large-scale integration
            29.   Xavier JR, Thakur T, Desai P,  et al., 2015, Bioactive   on a chip for mass production of monodisperse droplets and
               nanoengineered hydrogels for bone tissue engineering: A   particles. Lab Chip, 8:287–293.
               growth-factor-free approach. ACS Nano, 9:3109–3118.  https://doi.org/10.1039/b713141k
               https://doi.org/10.1021/nn507488s               41.   Kamperman T, Trikalitis VD, Karperien M,  et al., 2018,
            30.   Annabi N, Nichol JW, Zhong X,  et al., 2010, Controlling   Ultrahigh-throughput  production  of  monodisperse
               the porosity and microarchitecture of hydrogels for tissue   and multifunctional janus microparticles using in-air
               engineering. Tissue Eng Part B Rev, 16:371–383.    microfluidics. ACS Appl Mater Interfaces, 10:23433–23438.
               https://doi.org/10.1089/ten.TEB.2009.0639          https://doi.org/10.1021/acsami.8b05227


            Volume 9 Issue 5 (2023)                        105                         https://doi.org/10.18063/ijb.753
   108   109   110   111   112   113   114   115   116   117   118