Page 116 - IJB-9-5
P. 116

International Journal of Bioprinting                         Application and prospects of 3D printable microgels



               and biochemical cues  to attenuate cardiac fibrosis after   100.   Askari M, Naniz MA, Kouhi M, et al., 2021, Recent progress
               myocardial infarction. Biomaterials, 169:11–21.     in extrusion 3D bioprinting of hydrogel biomaterials for
               https://doi.org/10.1016/j.biomaterials.2018.03.042  tissue regeneration: A comprehensive review with focus on
                                                                   advanced fabrication techniques. Biomater Sci, 9:535–573.
            88.   Sideris E, Griffin DR, Ding Y, et al., 2016, Particle hydrogels
               based on hyaluronic acid building blocks. ACS Biomater Sci   https://doi.org/10.1039/D0BM00973C
               Eng, 2:2034–2041.                               101.   Mohan TS, Datta P, Nesaei S,  et al., 2022, 3D coaxial
               https://doi.org/10.1021/acsbiomaterials.6b00444     bioprinting: Process mechanisms, bioinks and applications.
                                                                   Prog Biomed Eng, 4:022003.
            89.   Seymour AJ, Shin S, Heilshorn SC, 2021, 3D printing of
               microgel scaffolds with tunable void fraction to promote cell   https://doi.org/10.1088/2516-1091/ac631c
               infiltration. Adv Healthc Mater, 10:e2100644.   102.   Lee JM, Yeong WY, 2016, Design and printing strategies
               https://doi.org/10.1002/adhm.202100644              in 3D bioprinting of cell-hydrogels: A review. Adv Healthc
                                                                   Mater, 5:2856–2865.
            90.   Dumont CM, Carlson MA, Munsell MK,  et al., 2019,
               Aligned hydrogel tubes guide regeneration following spinal   https://doi.org/10.1002/adhm.201600435
               cord injury. Acta Biomater, 86:312–322.         103.   Luo Y, Lode A, Gelinsky M, 2013, Direct plotting of three-
               https://doi.org/10.1016/j.actbio.2018.12.052        dimensional hollow fiber scaffolds based on concentrated
                                                                   alginate pastes for tissue engineering. Adv Healthc Mater,
            91.   Hu  Z, Ma  C, Rong  X,  et al., 2018,  Immunomodulatory   2:777–783.
               ECM-like microspheres for accelerated bone regeneration in
               diabetes mellitus. ACS Appl Mater Interfaces, 10:2377–2390.  https://doi.org/10.1002/adhm.201200303
               https://doi.org/10.1021/acsami.7b18458          104.   Hockaday LA, Kang KH, Colangelo NW, et al., 2012, Rapid
                                                                   3D  printing  of  anatomically  accurate  and  mechanically
            92.   Hoare TR, Kohane DS, 2008, Hydrogels in drug delivery:   heterogeneous  aortic  valve  hydrogel  scaffolds.
               Progress and challenges. Polymer, 49:1993–2007.
                                                                   Biofabrication, 4:035005.
               https://doi.org/10.1016/j.polymer.2008.01.027       https://doi.org/10.1088/1758-5082/4/3/035005
            93.   Li J, Mooney DJ, 2016, Designing hydrogels for controlled   105.   Ouyang L, Yao R, Chen X, et al., 2015, 3D printing of HEK
               drug delivery. Nat Rev Mater, 1:16071.
                                                                   293FT cell-laden hydrogel into macroporous constructs
               https://doi.org/10.1038/natrevmats.2016.71          with high cell viability and normal biological functions.
            94.   Bi D, Zhang J, Chakraborty B, et al., 2011, Jamming by shear.   Biofabrication, 7:015010.
               Nature, 480:355–358.                                https://doi.org/10.1088/1758-5090/7/1/015010
               https://doi.org/10.1038/nature10667             106.   Feng  Q,  Gao  H,  Wen  H,  et al.,  2020,  Engineering  the
            95.   Menut P, Seiffert S, Sprakel J, et al., 2012, Does size matter?   cellular mechanical microenvironment to regulate stem
               Elasticity of compressed suspensions of colloidal- and   cell chondrogenesis: Insights from a microgel model. Acta
               granular-scale microgels. Soft Matter, 8:156–164.   Biomater, 113:393–406.
               https://doi.org/10.1039/C1SM06355C                  https://doi.org/10.1016/j.actbio.2020.06.046
            96.   Flégeau K, Puiggali-Jou A, Zenobi-Wong M, 2022, Cartilage   107.   Kharkar PM, Kiick KL, Kloxin AM, 2015, Design of thiol-
               tissue engineering by extrusion bioprinting utilizing porous   and light-sensitive degradable hydrogels using Michael-
               hyaluronic acid microgel bioinks. Biofabrication, 14.  type addition reactions. Polym Chem, 6:5565–5574.
               https://doi.org/10.1088/1758-5090/ac6b58            https://doi.org/10.1039/C5PY00750J
            97.   Kessel  B,  Lee  M,  Bonato  A,  et al.,  2020,  3D  bioprinting   108.   Madl CM, LeSavage BL, Dewi RE, et al., 2017, Maintenance
               of macroporous materials based on entangled hydrogel   of neural progenitor cell stemness in 3D hydrogels requires
               microstrands. Adv Sci (Weinh), 7:2001419.           matrix remodelling. Nat Mater, 16:1233–1242.
               https://doi.org/10.1002/advs.202001419              https://doi.org/10.1038/nmat5020
            98.   Zhao D, Liu Y, Liu B, et al., 2021, 3D printing method for   109.   Webber MJ, Appel EA, Meijer EW,  et al., 2016,
               tough multifunctional particle-based double-network   Supramolecular biomaterials. Nat Mater, 15:13–26.
               hydrogels. ACS Appl Mater Interfaces, 13:13714–13723.  https://doi.org/10.1038/nmat4474
               https://doi.org/10.1021/acsami.1c01413          110.   Zhu D, Wang H, Trinh P, et al., 2017, Elastin-like protein-
            99.   Caliari SR, Vega SL, Kwon M, et al., 2016, Dimensionality   hyaluronic acid (ELP-HA) hydrogels with decoupled
               and spreading influence MSC YAP/TAZ signaling in    mechanical and biochemical cues for cartilage regeneration.
               hydrogel environments. Biomaterials, 103:314–323.   Biomaterials, 127:132–140.
               https://doi.org/10.1016/j.biomaterials.2016.06.061  https://doi.org/10.1016/j.biomaterials.2017.02.010


            Volume 9 Issue 5 (2023)                        108                         https://doi.org/10.18063/ijb.753
   111   112   113   114   115   116   117   118   119   120   121