Page 118 - IJB-9-5
P. 118
International Journal of Bioprinting Application and prospects of 3D printable microgels
134. Jiang Y, 2022, Osteoarthritis year in review 2021: Biology. multiphase granular hydrogel scaffolds. Bioact Mater,
Osteoarthr Cartil, 30:207–215. 9:358–372.
https://doi.org/10.1016/j.joca.2021.11.009 https://doi.org/10.1016/j.bioactmat.2021.07.008
135. Jeon O, Bin Lee Y, Hinton TJ, et al., 2019, Cryopreserved 146. Yang J, Hsu C-C, Cao T-T, et al., 2023, A hyaluronic acid
cell-laden alginate microgel bioink for 3D bioprinting of granular hydrogel nerve guidance conduit promotes
living tissues. Mater Today Chem, 12:61–70. regeneration and functional recovery of injured sciatic
nerves in rats. Neural Regen Res, 18:657–663.
https://doi.org/10.1016/j.mtchem.2018.11.009
https://doi.org/10.4103/1673-5374.350212
136. Zhu Y, Sun Y, Rui B, et al., 2022, A photoannealed granular
hydrogel facilitating hyaline cartilage regeneration via 147. Molley TG, Jalandhra GK, Nemec SR, et al., 2021,
improving chondrogenic phenotype. ACS Appl Mater Heterotypic tumor models through freeform printing into
Interfaces, 14:40674–40687. photostabilized granular microgels. Biomater Sci, 9:4496–
4509.
https://doi.org/10.1021/acsami.2c11956
https://doi.org/10.1039/d1bm00574j
137. Chai N, Zhang J, Zhang Q, et al., 2021, Construction of 3D
printed constructs based on microfluidic microgel for bone 148. Zeng Y, Zhu L, Han Q, et al., 2015, Preformed gelatin
regeneration. Compos Part B Eng, 223:109100. microcryogels as injectable cell carriers for enhanced skin
wound healing. Acta Biomater, 25:291–303.
https://doi.org/10.1016/j.compositesb.2021.109100
https://doi.org/10.1016/j.actbio.2015.07.042
138. Díaz del Moral S, Barrena S, Muñoz-Chápuli R, et al.,
2020, Embryonic circulating endothelial progenitor cells. 149. Brodu N, Dijksman JA, Behringer RP, 2015, Spanning the
Angiogenesis, 23:531–541. scales of granular materials through microscopic force
imaging. Nat Commun, 6:6361.
https://doi.org/10.1007/s10456-020-09732-y
https://doi.org/10.1038/ncomms7361
139. Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, et al., 2017,
The role of vasculature in bone development, regeneration 150. Roozbahani MM, Borela R, Frost JD, 2017, Pore size
and proper systemic functioning. Angiogenesis, 20:291–302. distribution in granular material microstructure. Materials
(Basel), 10:1237.
https://doi.org/10.1007/s10456-017-9541-1
https://doi.org/10.3390/ma10111237
140. Latacz E, Caspani E, Barnhill R, et al., 2020, Pathological
features of vessel co-option versus sprouting angiogenesis. 151. Jones AC, Arns CH, Hutmacher DW, et al., 2009, The
Angiogenesis, 23:43–54. correlation of pore morphology, interconnectivity and
physical properties of 3D ceramic scaffolds with bone
https://doi.org/10.1007/s10456-019-09690-0 ingrowth. Biomaterials, 30:1440–1451.
141. Parthiban SP, Athirasala A, Tahayeri A, et al., 2021, https://doi.org/10.1016/j.biomaterials.2008.10.056
BoneMA-synthesis and characterization of a methacrylated
bone-derived hydrogel for bioprinting of in-vitro 152. Schaller FM, Kapfer SC, Hilton JE, et al., 2015, Non-
vascularized tissue constructs. Biofabrication, 13. universal Voronoi cell shapes in amorphous ellipsoid
packs. EPL, 111:24002.
https://doi.org/10.1088/1758-5090/abb11f
https://doi.org/10.1209/0295-5075/111/24002
142. Sousa AMM, Meyer KA, Santpere G, et al., 2017, Evolution
of the human nervous system function, structure, and 153. Jeon O, Lee YB, Jeong H, et al., 2019, Individual cell-only
development. Cell, 170:226–247. bioink and photocurable supporting medium for 3D
printing and generation of engineered tissues with complex
https://doi.org/10.1016/j.cell.2017.06.036 geometries. Mater Horiz, 6:1625–1631.
143. Varadarajan SG, Hunyara JL, Hamilton NR, et al., 2022, https://doi.org/10.1039/c9mh00375d
Central nervous system regeneration. Cell, 185:77–94.
154. Kolesky DB, Truby RL, Gladman AS, et al., 2014, 3D
https://doi.org/10.1016/j.cell.2021.10.029 bioprinting of vascularized, heterogeneous cell-laden
144. Kajtez J, Wesseler MF, Birtele M, et al., 2022, Embedded tissue constructs. Adv Mater, 26:3124–3130.
3D printing in self‐healing annealable composites for https://doi.org/10.1002/adma.201305506
precise patterning of functionally mature human neural
constructs. Adv Sci (Weinh), 9:2201392. 155. Bertassoni LE, Cecconi M, Manoharan V, et al., 2014,
Hydrogel bioprinted microchannel networks for
https://doi.org/10.1002/advs.202201392 vascularization of tissue engineering constructs. Lab Chip,
14:2202–2211.
145. Hsu C-C, George JH, Waller S, et al., 2021, Increased
connectivity of hiPSC-derived neural networks in https://doi.org/10.1039/c4lc00030g
Volume 9 Issue 5 (2023) 110 https://doi.org/10.18063/ijb.753

