Page 118 - IJB-9-5
        P. 118
     International Journal of Bioprinting                         Application and prospects of 3D printable microgels
            134.   Jiang Y, 2022, Osteoarthritis year in review 2021: Biology.   multiphase granular hydrogel  scaffolds.  Bioact Mater,
                Osteoarthr Cartil, 30:207–215.                     9:358–372.
                https://doi.org/10.1016/j.joca.2021.11.009         https://doi.org/10.1016/j.bioactmat.2021.07.008
            135.   Jeon O, Bin Lee Y, Hinton TJ, et al., 2019, Cryopreserved   146.   Yang J, Hsu C-C, Cao T-T, et al., 2023, A hyaluronic acid
                cell-laden alginate microgel bioink for 3D bioprinting of   granular hydrogel nerve guidance conduit promotes
                living tissues. Mater Today Chem, 12:61–70.        regeneration and functional recovery of injured sciatic
                                                                   nerves in rats. Neural Regen Res, 18:657–663.
                https://doi.org/10.1016/j.mtchem.2018.11.009
                                                                   https://doi.org/10.4103/1673-5374.350212
            136.   Zhu Y, Sun Y, Rui B, et al., 2022, A photoannealed granular
                hydrogel  facilitating hyaline cartilage regeneration  via   147.   Molley TG, Jalandhra GK, Nemec SR,  et al., 2021,
                improving chondrogenic phenotype.  ACS Appl Mater   Heterotypic tumor models through freeform printing into
                Interfaces, 14:40674–40687.                        photostabilized granular microgels. Biomater Sci, 9:4496–
                                                                   4509.
                https://doi.org/10.1021/acsami.2c11956
                                                                   https://doi.org/10.1039/d1bm00574j
            137.   Chai N, Zhang J, Zhang Q, et al., 2021, Construction of 3D
                printed constructs based on microfluidic microgel for bone   148.   Zeng  Y,  Zhu  L,  Han  Q,  et al.,  2015,  Preformed  gelatin
                regeneration. Compos Part B Eng, 223:109100.       microcryogels as injectable cell carriers for enhanced skin
                                                                   wound healing. Acta Biomater, 25:291–303.
                https://doi.org/10.1016/j.compositesb.2021.109100
                                                                   https://doi.org/10.1016/j.actbio.2015.07.042
            138.   Díaz del Moral S, Barrena S, Muñoz-Chápuli R,  et al.,
                2020, Embryonic circulating endothelial progenitor cells.   149.   Brodu N, Dijksman JA, Behringer RP, 2015, Spanning the
                Angiogenesis, 23:531–541.                          scales of granular materials through microscopic force
                                                                   imaging. Nat Commun, 6:6361.
                https://doi.org/10.1007/s10456-020-09732-y
                                                                   https://doi.org/10.1038/ncomms7361
            139.   Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, et al., 2017,
                The role of vasculature in bone development, regeneration   150.   Roozbahani  MM,  Borela  R,  Frost  JD,  2017,  Pore  size
                and proper systemic functioning. Angiogenesis, 20:291–302.  distribution in granular material microstructure. Materials
                                                                   (Basel), 10:1237.
                https://doi.org/10.1007/s10456-017-9541-1
                                                                   https://doi.org/10.3390/ma10111237
            140.   Latacz E, Caspani E, Barnhill R, et al., 2020, Pathological
                features of vessel co-option versus sprouting angiogenesis.   151.   Jones AC, Arns CH, Hutmacher DW,  et al., 2009, The
                Angiogenesis, 23:43–54.                            correlation of  pore  morphology, interconnectivity  and
                                                                   physical properties of 3D ceramic scaffolds with bone
                https://doi.org/10.1007/s10456-019-09690-0         ingrowth. Biomaterials, 30:1440–1451.
            141.   Parthiban SP, Athirasala A, Tahayeri A,  et al., 2021,   https://doi.org/10.1016/j.biomaterials.2008.10.056
                BoneMA-synthesis and characterization of a methacrylated
                bone-derived hydrogel for bioprinting of in-vitro   152.   Schaller FM, Kapfer SC, Hilton JE,  et al., 2015, Non-
                vascularized tissue constructs. Biofabrication, 13.  universal  Voronoi  cell  shapes  in  amorphous  ellipsoid
                                                                   packs. EPL, 111:24002.
                https://doi.org/10.1088/1758-5090/abb11f
                                                                   https://doi.org/10.1209/0295-5075/111/24002
            142.   Sousa AMM, Meyer KA, Santpere G, et al., 2017, Evolution
                of the human nervous system function, structure, and   153.   Jeon O, Lee YB, Jeong H, et al., 2019, Individual cell-only
                development. Cell, 170:226–247.                    bioink and photocurable supporting medium for 3D
                                                                   printing and generation of engineered tissues with complex
                https://doi.org/10.1016/j.cell.2017.06.036         geometries. Mater Horiz, 6:1625–1631.
            143.   Varadarajan SG, Hunyara JL, Hamilton NR,  et al., 2022,   https://doi.org/10.1039/c9mh00375d
                Central nervous system regeneration. Cell, 185:77–94.
                                                               154.   Kolesky  DB,  Truby  RL,  Gladman  AS,  et al.,  2014,  3D
                https://doi.org/10.1016/j.cell.2021.10.029         bioprinting  of  vascularized,  heterogeneous  cell-laden
            144.   Kajtez J, Wesseler MF, Birtele M, et al., 2022, Embedded   tissue constructs. Adv Mater, 26:3124–3130.
                3D printing in self‐healing annealable composites for   https://doi.org/10.1002/adma.201305506
                precise patterning of functionally mature human neural
                constructs. Adv Sci (Weinh), 9:2201392.        155.   Bertassoni LE, Cecconi M, Manoharan V,  et al., 2014,
                                                                   Hydrogel  bioprinted  microchannel  networks  for
                https://doi.org/10.1002/advs.202201392             vascularization of tissue engineering constructs. Lab Chip,
                                                                   14:2202–2211.
            145.   Hsu C-C, George JH, Waller S,  et al., 2021, Increased
                connectivity  of hiPSC-derived  neural  networks  in   https://doi.org/10.1039/c4lc00030g
            Volume 9 Issue 5 (2023)                        110                         https://doi.org/10.18063/ijb.753
     	
