Page 407 - IJB-9-5
P. 407
International Journal of Bioprinting A sturgeon cartilage extracellular matrix-derived bioactive bioink
6. Valot L, Martinez J, Mehdi A, et al., 2019, Chemical 17. Bhattacharya R, Das P, Joardar SN, et al., 2019, Novel
insights into bioinks for 3D printing. Chem Soc Rev, 48(15): decellularized animal conchal cartilage graft for application
4049–4086. in human patient. J Tissue Eng Regen Med, 13(1):46–57.
https://doi.org/10.1039/c7cs00718c https://doi.org/10.1002/term.2767
7. Chimene D, Kaunas R, Gaharwar AK, 2020, Hydrogel 18. Das P, Singh YP, Joardar SN, et al., 2019, Decellularized
bioink reinforcement for additive manufacturing: A focused caprine conchal cartilage toward repair and regeneration of
review of emerging strategies. Adv Mater, 32(1):1902026. damaged cartilage. ACS Appl Bio Mater, 2(5):2037–2049.
https://doi.org/10.1002/adma.201902026 https://doi.org/10.1021/acsabm.9b00078
8. Ahlfeld T, Guduric V, Duin S, et al., 2020, Methylcellulose: 19. Viegas CSB, Conceicao N, Fazenda C, et al., 2010, Expression
Aversatile printing material that enables biofabrication of of Gla-rich protein (GRP) in newly developed cartilage-
tissue equivalents with high shape fidelity. Biomater Sci-UK, derived cell cultures from sturgeon (Acipenser naccarii). J
8(8):2102–2110. Appl Ichthyol, 26(2):214–218.
https://doi.org/10.1039/d0bm00027b https://doi.org/10.1111/j.1439-0426.2010.01408.x
9. Bandyopadhyay A, Ghosh S, Boccaccini AR, et al., 2021, 3D 20. Li Y, Chen W, Dai Y, et al., 2021, Decellularized sturgeon
printing of biomedical materials and devices. J Mater Res, cartilage extracellular matrix scaffold inhibits chondrocyte
36(19):3713–3724. hypertrophy in vitro and in vivo. J Tissue Eng Regen Med,
https://doi.org/10.1557/s43578-021-00407-y 15(8):732–744.
10. Oliveira EP, Malysz-Cymborska I, Golubczyk D, et al., 2019, https://doi.org/10.1002/term.3222
Advances in bioinks and in vivo imaging of biomaterials for 21. Qi C, Liu J, Jin Y, et al., 2018, Photo-crosslinkable, injectable
CNS applications. Acta Biomater, 95: 60–72. sericin hydrogel as 3D biomimetic extracellular matrix for
https://doi.org/10.1016/j.actbio.2019.05.006 minimally invasive repairing cartilage. Biomaterials, 163:
89–104.
11. Luo C, Xie R, Zhang J, et al., 2020, Low-temperature
three-dimensional printing of tissue cartilage engineered https://doi.org/10.1016/j.biomaterials.2018.02.016
with gelatin methacrylamide. Tissue Eng Part C Methods, 22. Chen W, Xu Y, Li H, et al., 2020, Tanshinone IIA delivery
26(6):306–316. silk fibroin scaffolds significantly enhance articular cartilage
https://doi.org/10.1089/ten.TEC.2020.0053 defect repairing via promoting cartilage regeneration. ACS
Appl Mater Interfaces, 12(19):21470–21480.
12. Beck EC, Barragan M, Tadros MH, et al., 2016, Approaching
the compressive modulus of articular cartilage with a https://doi.org/10.1021/acsami.0c03822
decellularized cartilage-based hydrogel. Acta Biomater, 38: 23. Kim H, Kang B, Cui XL, et al., 2021, Light-activated
94–105. decellularized extracellular matrix-based bioinks for
https://doi.org/10.1016/j.actbio.2016.04.019 volumetric tissue analogs at the centimeter scale. Adv Funct
Mater, 31(32).
13. Masaeli E, Nasr-Esfahani MH, 2021, An in vivo evaluation
of induced chondrogenesis by decellularized extracellular https://doi.org/10.1002/adfm.202011252
matrix particles. J Biomed Mater Res A, 109(5):627–636.
24. Zhao H, He LY, 2022, Fabrication of neuroprotective
https://doi.org/10.1002/jbm.a.37047 silk-sericin hydrogel: Potential neuronal carrier for the
treatment and care of ischemic stroke. J Exp Nanosci,
14. Sun WY, Yang YY, Wang L, et al., 2022, Utilization of an
acellular cartilage matrix-based photocrosslinking hydrogel 17(1):362–376.
for tracheal cartilage regeneration and circumferential https://doi.org/10.1080/17458080.2022.2075545
tracheal repair. Adv Funct Mater, 32(31):202201257.
25. Xue H, ZhangZH, Lin Z, et al., 2022, Enhanced tissue
https://doi.org/10.1002/adfm. regeneration through immunomodulation of angiogenesis
15. Yang Z, Shi Y, Wei X, et al., 2010, Fabrication and repair and osteogenesis with a multifaceted nanohybrid modified
of cartilage defects with a novel acellular cartilage matrix bioactive scaffold. Bioact Mater, 18: 552–568.
scaffold. Tissue Eng Part C Methods, 16(5):865–876. https://doi.org/10.1016/j.bioactmat.2022.05.023
https://doi.org/10.1089/ten.TEC.2009.0444 26. Huang Y, Meng X, Zhou Z, et al., 2022, A naringin-derived
16. Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional bioink enhances the shape fidelity of 3D bioprinting
tissue analogues with decellularized extracellular matrix and efficiency of cartilage defect repair. J Mater Chem B,
bioink. Nat Commun, 5: 3935. 10(36):7030–7044.
https://doi.org/10.1038/ncomms4935 https://doi.org/10.1039/d2tb01247b
Volume 9 Issue 5 (2023) 399 https://doi.org/10.18063/ijb.768

