Page 407 - IJB-9-5
P. 407

International Journal of Bioprinting                A sturgeon cartilage extracellular matrix-derived bioactive bioink



            6.   Valot L, Martinez J, Mehdi A,  et  al., 2019, Chemical   17.  Bhattacharya R, Das P, Joardar SN,  et al., 2019, Novel
               insights into bioinks for 3D printing. Chem Soc Rev, 48(15):   decellularized animal conchal cartilage graft for application
               4049–4086.                                         in human patient. J Tissue Eng Regen Med, 13(1):46–57.
               https://doi.org/10.1039/c7cs00718c                 https://doi.org/10.1002/term.2767
            7.   Chimene D, Kaunas  R, Gaharwar  AK, 2020, Hydrogel   18.  Das  P,  Singh  YP,  Joardar  SN,  et al.,  2019,  Decellularized
               bioink reinforcement for additive manufacturing: A focused   caprine conchal cartilage toward repair and regeneration of
               review of emerging strategies. Adv Mater, 32(1):1902026.  damaged cartilage. ACS Appl Bio Mater, 2(5):2037–2049.
               https://doi.org/10.1002/adma.201902026             https://doi.org/10.1021/acsabm.9b00078
            8.   Ahlfeld T, Guduric V, Duin S, et al., 2020, Methylcellulose:   19.  Viegas CSB, Conceicao N, Fazenda C, et al., 2010, Expression
               Aversatile printing material that enables biofabrication of   of Gla-rich protein (GRP) in newly developed cartilage-
               tissue equivalents with high shape fidelity. Biomater Sci-UK,   derived cell cultures from sturgeon (Acipenser naccarii). J
               8(8):2102–2110.                                    Appl Ichthyol, 26(2):214–218.
               https://doi.org/10.1039/d0bm00027b                 https://doi.org/10.1111/j.1439-0426.2010.01408.x
            9.   Bandyopadhyay A, Ghosh S, Boccaccini AR, et al., 2021, 3D   20.  Li Y, Chen W, Dai Y, et al., 2021, Decellularized sturgeon
               printing of biomedical materials and devices. J Mater Res,   cartilage extracellular matrix scaffold inhibits chondrocyte
               36(19):3713–3724.                                  hypertrophy in vitro and in vivo. J Tissue Eng Regen Med,
               https://doi.org/10.1557/s43578-021-00407-y         15(8):732–744.
            10.  Oliveira EP, Malysz-Cymborska I, Golubczyk D, et al., 2019,   https://doi.org/10.1002/term.3222
               Advances in bioinks and in vivo imaging of biomaterials for   21.  Qi C, Liu J, Jin Y, et al., 2018, Photo-crosslinkable, injectable
               CNS applications. Acta Biomater, 95: 60–72.        sericin hydrogel as 3D biomimetic extracellular matrix for
               https://doi.org/10.1016/j.actbio.2019.05.006       minimally invasive repairing cartilage.  Biomaterials, 163:
                                                                  89–104.
            11.  Luo  C,  Xie  R,  Zhang  J,  et al.,  2020,  Low-temperature
               three-dimensional printing of tissue cartilage engineered   https://doi.org/10.1016/j.biomaterials.2018.02.016
               with gelatin methacrylamide.  Tissue  Eng  Part  C  Methods,   22.  Chen W, Xu Y, Li H, et al., 2020, Tanshinone IIA delivery
               26(6):306–316.                                     silk fibroin scaffolds significantly enhance articular cartilage
               https://doi.org/10.1089/ten.TEC.2020.0053          defect repairing via promoting cartilage regeneration. ACS
                                                                  Appl Mater Interfaces, 12(19):21470–21480.
            12.  Beck EC, Barragan M, Tadros MH, et al., 2016, Approaching
               the compressive modulus of articular cartilage with a   https://doi.org/10.1021/acsami.0c03822
               decellularized cartilage-based hydrogel. Acta Biomater, 38:   23.  Kim H, Kang B, Cui XL,  et al., 2021, Light-activated
               94–105.                                            decellularized extracellular matrix-based bioinks for
               https://doi.org/10.1016/j.actbio.2016.04.019       volumetric tissue analogs at the centimeter scale. Adv Funct
                                                                  Mater, 31(32).
            13.  Masaeli E, Nasr-Esfahani MH, 2021, An in vivo evaluation
               of induced chondrogenesis by decellularized extracellular   https://doi.org/10.1002/adfm.202011252
               matrix particles. J Biomed Mater Res A, 109(5):627–636.
                                                               24.  Zhao H, He LY, 2022, Fabrication of neuroprotective
               https://doi.org/10.1002/jbm.a.37047                silk-sericin hydrogel: Potential neuronal carrier for the
                                                                  treatment and care of ischemic stroke.  J Exp Nanosci,
            14.  Sun WY, Yang YY, Wang L, et al., 2022, Utilization of an
               acellular cartilage matrix-based photocrosslinking hydrogel   17(1):362–376.
               for  tracheal  cartilage  regeneration  and  circumferential   https://doi.org/10.1080/17458080.2022.2075545
               tracheal repair. Adv Funct Mater, 32(31):202201257.
                                                               25.  Xue H, ZhangZH, Lin Z,  et al., 2022, Enhanced tissue
               https://doi.org/10.1002/adfm.                      regeneration through immunomodulation of angiogenesis
            15.  Yang Z, Shi Y, Wei X, et al., 2010, Fabrication and repair   and osteogenesis with a multifaceted nanohybrid modified
               of cartilage defects with a novel acellular cartilage matrix   bioactive scaffold. Bioact Mater, 18: 552–568.
               scaffold. Tissue Eng Part C Methods, 16(5):865–876.  https://doi.org/10.1016/j.bioactmat.2022.05.023
               https://doi.org/10.1089/ten.TEC.2009.0444       26.  Huang Y, Meng X, Zhou Z, et al., 2022, A naringin-derived
            16.  Pati F, Jang J, Ha DH, et al., 2014, Printing three-dimensional   bioink enhances the shape fidelity of 3D bioprinting
               tissue analogues with decellularized extracellular matrix   and efficiency of cartilage defect repair.  J Mater Chem B,
               bioink. Nat Commun, 5: 3935.                       10(36):7030–7044.
               https://doi.org/10.1038/ncomms4935                 https://doi.org/10.1039/d2tb01247b


            Volume 9 Issue 5 (2023)                        399                          https://doi.org/10.18063/ijb.768
   402   403   404   405   406   407   408   409   410   411   412