Page 228 - IJB-9-6
P. 228

International Journal of Bioprinting                     Multi-Cellular tissues/organoids manufacturing strategies




            105. Daly AC, Davidson MD, Burdick JA, 2021, 3D-Bioprinting   induced  locally-enhanced  electric  field  on  a microfluidic
               of  high  cell-density heterogeneous  tissue  models  through   chip. Biomicrofluidics, 12(3): 034108.
               spheroid fusion within self-healing hydrogels. Nat Commun,   https://doi.org/10.1063/1.5028158
               12(1): 1–13.
                                                               116. Hinton TJ, Jallerat Q, Palchesko RN,  et al., 2015, Three-
               https://doi.org/10.1038/s41467-021-21029-2
                                                                  dimensional printing of complex biological structures by
            106. Faraji Rad Z, Prewett PD, Davies GJ, 2021, High-resolution   freeform reversible embedding of suspended hydrogels. Sci
               two-photon polymerization: the most versatile technique for   Adv, 1(9): e1500758.
               the fabrication of microneedle arrays.  Microsyst Nanoeng,   https://doi.org/10.1126/sciadv.1500758
               7(1): 1–17.
                                                               117. Augustine R, Nuthana Kalva S, Ahmed R, et al., 2021, 3D
               https://doi.org/10.1038/s41378-021-00298-3
                                                                  bioprinted cancer  models:  Revolutionizing  personalized
            107. Santoni S, Gugliandolo SG, Sponchioni M,  et  al., 2022,   cancer therapy. Transl Oncol, 14(4): 101015.
               3D-Bioprinting: Current status and trends—a guide to the   https://doi.org/10.1016/j.tranon.2021.101015
               literature and industrial practice. Bio-Des Manuf, 5(1, SI):
               14–42.                                          118. Xu F, Celli J, Rizvi I, et al., 2011, A three-dimensional in vitro
                                                                  ovarian cancer coculture model using a high-throughput
               https://doi.org/10.1007/s42242-021-00165-0         cell patterning platform. Biotechnol J, 6(2): 204–212.
            108. Struzyna LA, Watt ML, 2021, The emerging role of neuronal   https://doi.org/10.1002/biot.201000340
               organoid models in drug discovery: Potential applications
               and  hurdles  to  implementation.  Mol Pharmacol,  99(4):    119. Chang R, Nam J, Sun W, 2008, Direct cell writing of 3D
               256–265.                                           microorgan for in vitro pharmacokinetic model. Tissue Eng
                                                                  Part C Methods, 14(2): 157–166.
               https://doi.org/10.1124/molpharm.120.000142
                                                                  https://doi.org/10.1089/ten.tec.2007.0392
            109. Zhang Y, Li W, Pan P, et al., 2022, Programmable construction
               of vasculature by printing in cementitious materials for self-  120. Norotte C, Marga FS, Niklason LE, et al., 2009, Scaffold-free
               healing application. Compos Part B Eng, 242: 110056.  vascular tissue engineering using bioprinting. Biomaterials,
                                                                  30(30): 5910–5917.
               https://doi.org/10.1016/j.compositesb.2022.110056
                                                                  https://doi.org/10.1016/j.biomaterials.2009.06.034
            110. Liu H, Zhou H, Lan H, et al., 2018, Multinozzle multichannel
               temperature deposition system for construction of a blood   121. Ren Y, Yang X, Ma Z,  et al., 2021, Developments and
               vessel. SLAS Technol, 23(1): 64–69.                opportunities for 3D bioprinted organoids.  Int J Bioprint,
                                                                  7(3): 364.
               https://doi.org/10.1177/2472630317712221
                                                                  https://doi.org/10.18063/ijb.v7i3.364
            111. Liu H, Zhou H, Lan H, et al., 2017, 3D printing of artificial
               blood vessel: Study on multi-parameter optimization   122. Leberfinger AN, Ravnic DJ, Dhawan A, et al., 2017, Concise
               design for vascular molding effect in alginate and gelatin.   review: Bioprinting  of stem cells for transplantable  tissue
               Micromachines, 8(8): 237.                          fabrication. Stem Cell Transl Med, 6(10): 1940–1948.
                                                                  https://doi.org/10.1002/sctm.17-0148
               https://doi.org/10.3390/mi8080237
                                                               123. Lam EHY, Yu F, Zhu S, et al., 2023, 3D-bioprinting for next-
            112. Wang S, Chen X, Han X, et al., 2023, A review of 3D printing   generation personalized medicine. Int J Mol Sci, 24(7): 6357.
               technology in pharmaceutics: Technology and applications,
               now and future. Pharmaceutics, 15(2): 416.         https://doi.org/10.3390/ijms24076357
               https://doi.org/10.3390/pharmaceutics15020416   124.  Chansoria  P,  Schuchard  K,  Shirwaiker  RA,  2021,  Process
                                                                  hybridization schemes for multiscale engineered tissue
            113. Murata D, Arai K, Nakayama K, 2020, Scaffold‐free bio‐3D   biofabrication. WIREs Nanomed Nanobiotechnol, 13(2): e1673.
               printing using spheroids as “bio‐inks” for tissue (re‐)
               construction and drug response tests. Adv Healthc Mater,   https://doi.org/10.1002/wnan.1673
               267(1): 1901831.                                125. Kang B, Shin J, Park H-J,  et al., 2018, High-resolution
               https://doi.org/10.1002/adhm.201901831             acoustophoretic 3D cell patterning to construct functional
                                                                  collateral cylindroids for ischemia therapy.  Nat Commun,
            114. Yaman S, Anil-Inevi M, Ozcivici E, et al., 2018, Magnetic   9(1): 1–13.
               force-based microfluidic techniques for cellular and tissue
               bioengineering. Front Bioeng Biotechnol, 6: 192.   https://doi.org/10.1038/s41467-018-07823-5
               https://doi.org/10.3389/fbioe.2018.00192        126.  Morita T, Watanabe S, Sasaki S, 2023, Multiaxis printing method
                                                                  for bent tubular structured gels in support bath for achieving
            115. Hsiao Y-C, Wang C-H, Lee W-B, et al., 2018, Automatic cell   high dimension and shape accuracy. Precis Eng, 79: 109–118.
               fusion via optically-induced dielectrophoresis and optically-
                                                                  https://doi.org/10.1016/j.precisioneng.2022.09.004

            Volume 9 Issue 6 (2023)                        220                        https://doi.org/10.36922/ijb.0135
   223   224   225   226   227   228   229   230   231   232   233