Page 228 - IJB-9-6
P. 228
International Journal of Bioprinting Multi-Cellular tissues/organoids manufacturing strategies
105. Daly AC, Davidson MD, Burdick JA, 2021, 3D-Bioprinting induced locally-enhanced electric field on a microfluidic
of high cell-density heterogeneous tissue models through chip. Biomicrofluidics, 12(3): 034108.
spheroid fusion within self-healing hydrogels. Nat Commun, https://doi.org/10.1063/1.5028158
12(1): 1–13.
116. Hinton TJ, Jallerat Q, Palchesko RN, et al., 2015, Three-
https://doi.org/10.1038/s41467-021-21029-2
dimensional printing of complex biological structures by
106. Faraji Rad Z, Prewett PD, Davies GJ, 2021, High-resolution freeform reversible embedding of suspended hydrogels. Sci
two-photon polymerization: the most versatile technique for Adv, 1(9): e1500758.
the fabrication of microneedle arrays. Microsyst Nanoeng, https://doi.org/10.1126/sciadv.1500758
7(1): 1–17.
117. Augustine R, Nuthana Kalva S, Ahmed R, et al., 2021, 3D
https://doi.org/10.1038/s41378-021-00298-3
bioprinted cancer models: Revolutionizing personalized
107. Santoni S, Gugliandolo SG, Sponchioni M, et al., 2022, cancer therapy. Transl Oncol, 14(4): 101015.
3D-Bioprinting: Current status and trends—a guide to the https://doi.org/10.1016/j.tranon.2021.101015
literature and industrial practice. Bio-Des Manuf, 5(1, SI):
14–42. 118. Xu F, Celli J, Rizvi I, et al., 2011, A three-dimensional in vitro
ovarian cancer coculture model using a high-throughput
https://doi.org/10.1007/s42242-021-00165-0 cell patterning platform. Biotechnol J, 6(2): 204–212.
108. Struzyna LA, Watt ML, 2021, The emerging role of neuronal https://doi.org/10.1002/biot.201000340
organoid models in drug discovery: Potential applications
and hurdles to implementation. Mol Pharmacol, 99(4): 119. Chang R, Nam J, Sun W, 2008, Direct cell writing of 3D
256–265. microorgan for in vitro pharmacokinetic model. Tissue Eng
Part C Methods, 14(2): 157–166.
https://doi.org/10.1124/molpharm.120.000142
https://doi.org/10.1089/ten.tec.2007.0392
109. Zhang Y, Li W, Pan P, et al., 2022, Programmable construction
of vasculature by printing in cementitious materials for self- 120. Norotte C, Marga FS, Niklason LE, et al., 2009, Scaffold-free
healing application. Compos Part B Eng, 242: 110056. vascular tissue engineering using bioprinting. Biomaterials,
30(30): 5910–5917.
https://doi.org/10.1016/j.compositesb.2022.110056
https://doi.org/10.1016/j.biomaterials.2009.06.034
110. Liu H, Zhou H, Lan H, et al., 2018, Multinozzle multichannel
temperature deposition system for construction of a blood 121. Ren Y, Yang X, Ma Z, et al., 2021, Developments and
vessel. SLAS Technol, 23(1): 64–69. opportunities for 3D bioprinted organoids. Int J Bioprint,
7(3): 364.
https://doi.org/10.1177/2472630317712221
https://doi.org/10.18063/ijb.v7i3.364
111. Liu H, Zhou H, Lan H, et al., 2017, 3D printing of artificial
blood vessel: Study on multi-parameter optimization 122. Leberfinger AN, Ravnic DJ, Dhawan A, et al., 2017, Concise
design for vascular molding effect in alginate and gelatin. review: Bioprinting of stem cells for transplantable tissue
Micromachines, 8(8): 237. fabrication. Stem Cell Transl Med, 6(10): 1940–1948.
https://doi.org/10.1002/sctm.17-0148
https://doi.org/10.3390/mi8080237
123. Lam EHY, Yu F, Zhu S, et al., 2023, 3D-bioprinting for next-
112. Wang S, Chen X, Han X, et al., 2023, A review of 3D printing generation personalized medicine. Int J Mol Sci, 24(7): 6357.
technology in pharmaceutics: Technology and applications,
now and future. Pharmaceutics, 15(2): 416. https://doi.org/10.3390/ijms24076357
https://doi.org/10.3390/pharmaceutics15020416 124. Chansoria P, Schuchard K, Shirwaiker RA, 2021, Process
hybridization schemes for multiscale engineered tissue
113. Murata D, Arai K, Nakayama K, 2020, Scaffold‐free bio‐3D biofabrication. WIREs Nanomed Nanobiotechnol, 13(2): e1673.
printing using spheroids as “bio‐inks” for tissue (re‐)
construction and drug response tests. Adv Healthc Mater, https://doi.org/10.1002/wnan.1673
267(1): 1901831. 125. Kang B, Shin J, Park H-J, et al., 2018, High-resolution
https://doi.org/10.1002/adhm.201901831 acoustophoretic 3D cell patterning to construct functional
collateral cylindroids for ischemia therapy. Nat Commun,
114. Yaman S, Anil-Inevi M, Ozcivici E, et al., 2018, Magnetic 9(1): 1–13.
force-based microfluidic techniques for cellular and tissue
bioengineering. Front Bioeng Biotechnol, 6: 192. https://doi.org/10.1038/s41467-018-07823-5
https://doi.org/10.3389/fbioe.2018.00192 126. Morita T, Watanabe S, Sasaki S, 2023, Multiaxis printing method
for bent tubular structured gels in support bath for achieving
115. Hsiao Y-C, Wang C-H, Lee W-B, et al., 2018, Automatic cell high dimension and shape accuracy. Precis Eng, 79: 109–118.
fusion via optically-induced dielectrophoresis and optically-
https://doi.org/10.1016/j.precisioneng.2022.09.004
Volume 9 Issue 6 (2023) 220 https://doi.org/10.36922/ijb.0135

