Page 226 - IJB-9-6
P. 226
International Journal of Bioprinting Multi-Cellular tissues/organoids manufacturing strategies
61. Smith LJ, Li P, Holland MR, et al., 2018, FABRICA: A exposure within microfluidic cell handling systems. Adv Sci,
bioreactor platform for printing, perfusing, observing, & 6(24): 1902326.
stimulating 3D tissues. Sci Rep, 8(1): 7561.
https://doi.org/10.1002/advs.201902326
https://doi.org/10.1038/s41598-018-25663-7
73. Karthick S, Pradeep PN, Kanchana P, et al., 2018, Acoustic
62. Holland I, Logan J, Shi J, et al., 2018, 3D biofabrication for impedance-based size-independent isolation of circulating
tubular tissue engineering. Bio-Design Manuf, 1(2): 89–100. tumour cells from blood using acoustophoresis. Lab Chip,
https://doi.org/10.1007/s42242-018-0013-2 18(24): 3802–3813.
63. Manning KL, Thomson AH, Morgan JR, 2018, Funnel- https://doi.org/10.1039/C8LC00921J
guided positioning of multicellular microtissues to build 74. Ozcelik A, Rufo J, Guo F, et al., 2018, Acoustic tweezers for
macrotissues. Tissue Eng Part C Methods, 24(10): 557–565. the life sciences. Nat Methods, 15(12): 1021–1028.
https://doi.org/10.1089/ten.tec.2018.0137 https://doi.org/10.1038/s41592-018-0222-9
64. van Pel DM, Harada K, Song D, et al., 2018, Modelling 75. Jonnalagadda US, Hill M, Messaoudi W, et al., 2018,
glioma invasion using 3D-Bioprinting and scaffold-free 3D Acoustically modulated biomechanical stimulation for
culture. J Cell Commun Signal, 12(4): 723–730. human cartilage tissue engineering. Lab Chip, 18(3): 473–485.
https://doi.org/10.1007/s12079-018-0469-z https://doi.org/10.1039/C7LC01195D
65. Nakanishi Y, Okada T, Takeuchi N, et al., 2019, Histological 76. Bouyer C, Chen P, Demirci U, et al., 2016, Bio-acoustic
evaluation of tendon formation using a scaffold-free three- levitational assembly of heterocellular multilayer constructs
dimensional-bioprinted construct of human dermal fibroblasts for tissue engineering. J Acoust Soc Am, 140(4): 3370–3370.
under in vitro static tensile culture. Regen Ther, 11: 47–55.
https://doi.org/10.1121/1.4970762
https://doi.org/10.1016/j.reth.2019.02.002
77. Bouyer C, Chen P, Güven S, et al., 2016, A bio-acoustic
66. Taniguchi D, Matsumoto K, Tsuchiya T, et al., 2018, Scaffold- levitational (BAL) assembly method for engineering of
free trachea regeneration by tissue engineering with bio- multilayered, 3D brain-like constructs, using human
3D printing. Interact CardioVasc Thorac Surg, 26(5): embryonic stem cell derived neuro-progenitors. Adv Mater,
745–752. 28(1): 161–167.
67. Yurie H, Ikeguchi R, Aoyama T, et al., 2017, The efficacy https://doi.org/10.1002/adma.201503916
of a scaffold-free Bio 3D conduit developed from human
fibroblasts on peripheral nerve regeneration in a rat sciatic 78. Tian Z, Wang Z, Zhang P, et al., 2020, Generating
nerve model. PloS One, 12(2): e0171448. multifunctional acoustic tweezers in Petri dishes for
contactless, precise manipulation of bioparticles. Sci Adv,
https://doi.org/10.1371/journal.pone.0171448 6(37): eabb0494.
68. Ozbolat IT, 2015, Scaffold-based or scaffold-free bioprinting: https://doi.org/10.1126/sciadv.abb0494
Competing or complementing approaches? J Nanotechnol
Eng Med, 6(2): 024701. 79. Melde K, Mark AG, Qiu T, et al., 2016, Holograms for
acoustics. Nature, 537(7621): 518–522.
https://doi.org/10.1115/1.4030414
https://doi.org/10.1038/nature19755
69. Guan Y, Niu H, Liu Z, et al., 2021, Sustained oxygenation
accelerates diabetic wound healing by promoting 80. Afsaneh H, Mohammadi R, 2022, Microfluidic platforms
epithelialization and angiogenesis and decreasing for the manipulation of cells and particles. Talanta Open, 5:
inflammation. Sci Adv, 7(35): eabj0153. 100092.
https://doi.org/10.1126/sciadv.abj0153 https://doi.org/10.1016/j.talo.2022.100092
70. Banerjee D, Singh YP, Datta P, et al., 2022, Strategies for 81. Guimarães CF, Soto F, Wang J, et al., 2022, Engineered
3D bioprinting of spheroids: A comprehensive review. living bioassemblies for biomedical and functional material
Biomaterials, 291: 121881. applications. Curr Opin Biotechnol, 77: 102756.
http://doi.org/10.1016/j.biomaterials.2022.121881 https://doi.org/10.1016/j.copbio.2022.102756
71. Huang TJ, 2019, Acoustofluidics: Merging acoustics and 82. Shi L, Zhong X, Ding H, et al., 2022, Continuous separation of
microfluidics for biomedical applications. J Acoust Soc Am, microparticles based on optically induced dielectrophoresis.
145(3): 1786–1786. Microfluid Nanofluid, 26(1): 6.
https://doi.org/10.1121/1.5101531 https://doi.org/10.1007/s10404-021-02512-0
72. Devendran C, Carthew J, Frith JE, et al., 2019, Cell adhesion, 83. Yang C-M, Yu J-C, Chu P-Y, et al., 2022, The utilization of
morphology, and metabolism variation via acoustic tunable transducer elements formed by the manipulation
Volume 9 Issue 6 (2023) 218 https://doi.org/10.36922/ijb.0135

