Page 226 - IJB-9-6
P. 226

International Journal of Bioprinting                     Multi-Cellular tissues/organoids manufacturing strategies




            61.  Smith LJ, Li P, Holland MR,  et al., 2018, FABRICA: A   exposure within microfluidic cell handling systems. Adv Sci,
               bioreactor platform for printing, perfusing, observing, &   6(24): 1902326.
               stimulating 3D tissues. Sci Rep, 8(1): 7561.
                                                                  https://doi.org/10.1002/advs.201902326
               https://doi.org/10.1038/s41598-018-25663-7
                                                               73.  Karthick S, Pradeep PN, Kanchana P, et al., 2018, Acoustic
            62.  Holland I, Logan J, Shi J, et al., 2018, 3D biofabrication for   impedance-based size-independent isolation of circulating
               tubular tissue engineering. Bio-Design Manuf, 1(2): 89–100.  tumour cells from blood using acoustophoresis. Lab Chip,
               https://doi.org/10.1007/s42242-018-0013-2          18(24): 3802–3813.
            63.  Manning KL, Thomson AH, Morgan JR, 2018, Funnel-  https://doi.org/10.1039/C8LC00921J
               guided  positioning  of  multicellular microtissues  to build   74.  Ozcelik A, Rufo J, Guo F, et al., 2018, Acoustic tweezers for
               macrotissues. Tissue Eng Part C Methods, 24(10): 557–565.  the life sciences. Nat Methods, 15(12): 1021–1028.
               https://doi.org/10.1089/ten.tec.2018.0137          https://doi.org/10.1038/s41592-018-0222-9
            64.  van Pel DM, Harada K, Song D,  et al., 2018, Modelling   75.  Jonnalagadda US, Hill M, Messaoudi W,  et al., 2018,
               glioma invasion using 3D-Bioprinting and scaffold-free 3D   Acoustically  modulated  biomechanical  stimulation for
               culture. J Cell Commun Signal, 12(4): 723–730.     human cartilage tissue engineering. Lab Chip, 18(3): 473–485.
               https://doi.org/10.1007/s12079-018-0469-z          https://doi.org/10.1039/C7LC01195D
            65.  Nakanishi Y, Okada T, Takeuchi N, et al., 2019, Histological   76.  Bouyer C, Chen P, Demirci U,  et al., 2016, Bio-acoustic
               evaluation of tendon formation using a scaffold-free three-  levitational assembly of heterocellular multilayer constructs
               dimensional-bioprinted construct of human dermal fibroblasts   for tissue engineering. J Acoust Soc Am, 140(4): 3370–3370.
               under in vitro static tensile culture. Regen Ther, 11: 47–55.
                                                                  https://doi.org/10.1121/1.4970762
               https://doi.org/10.1016/j.reth.2019.02.002
                                                               77.  Bouyer C, Chen P, Güven S,  et al., 2016, A bio-acoustic
            66.  Taniguchi D, Matsumoto K, Tsuchiya T, et al., 2018, Scaffold-  levitational (BAL) assembly method for engineering of
               free trachea regeneration by tissue engineering with bio-  multilayered, 3D brain-like constructs, using human
               3D printing.  Interact CardioVasc Thorac Surg, 26(5):    embryonic stem cell derived neuro-progenitors. Adv Mater,
               745–752.                                           28(1): 161–167.
            67.  Yurie  H, Ikeguchi R, Aoyama  T, et al., 2017,  The efficacy   https://doi.org/10.1002/adma.201503916
               of a scaffold-free Bio 3D conduit developed from human
               fibroblasts on peripheral nerve regeneration in a rat sciatic   78.  Tian Z, Wang Z, Zhang P,  et al., 2020, Generating
               nerve model. PloS One, 12(2): e0171448.            multifunctional  acoustic  tweezers  in Petri dishes  for
                                                                  contactless, precise manipulation of bioparticles.  Sci Adv,
               https://doi.org/10.1371/journal.pone.0171448       6(37): eabb0494.
            68.  Ozbolat IT, 2015, Scaffold-based or scaffold-free bioprinting:   https://doi.org/10.1126/sciadv.abb0494
               Competing or complementing approaches?  J Nanotechnol
               Eng Med, 6(2): 024701.                          79.  Melde K, Mark AG, Qiu T,  et al., 2016, Holograms for
                                                                  acoustics. Nature, 537(7621): 518–522.
               https://doi.org/10.1115/1.4030414
                                                                  https://doi.org/10.1038/nature19755
            69.  Guan Y, Niu H, Liu Z, et al., 2021, Sustained oxygenation
               accelerates diabetic wound healing by promoting   80.  Afsaneh H, Mohammadi R, 2022, Microfluidic platforms
               epithelialization  and  angiogenesis  and  decreasing  for the manipulation of cells and particles. Talanta Open, 5:
               inflammation. Sci Adv, 7(35): eabj0153.            100092.
               https://doi.org/10.1126/sciadv.abj0153             https://doi.org/10.1016/j.talo.2022.100092
            70.  Banerjee D, Singh YP, Datta P, et al., 2022, Strategies for   81.  Guimarães CF, Soto F, Wang J,  et al., 2022, Engineered
               3D bioprinting of spheroids: A comprehensive review.   living bioassemblies for biomedical and functional material
               Biomaterials, 291: 121881.                         applications. Curr Opin Biotechnol, 77: 102756.
               http://doi.org/10.1016/j.biomaterials.2022.121881  https://doi.org/10.1016/j.copbio.2022.102756
            71.  Huang TJ, 2019, Acoustofluidics: Merging acoustics and   82.  Shi L, Zhong X, Ding H, et al., 2022, Continuous separation of
               microfluidics for biomedical applications. J Acoust Soc Am,   microparticles based on optically induced dielectrophoresis.
               145(3): 1786–1786.                                 Microfluid Nanofluid, 26(1): 6.
               https://doi.org/10.1121/1.5101531                  https://doi.org/10.1007/s10404-021-02512-0
            72.  Devendran C, Carthew J, Frith JE, et al., 2019, Cell adhesion,   83.  Yang C-M, Yu J-C, Chu P-Y, et al., 2022, The utilization of
               morphology, and metabolism variation via acoustic   tunable transducer elements formed by the manipulation


            Volume 9 Issue 6 (2023)                        218                        https://doi.org/10.36922/ijb.0135
   221   222   223   224   225   226   227   228   229   230   231