Page 225 - IJB-9-6
P. 225

International Journal of Bioprinting                     Multi-Cellular tissues/organoids manufacturing strategies




            38.  Cuvellier M, Ezan F, Oliveira H, et al., 2021, 3D culture of   49.  Mekhileri NV, Lim KS, Brown GCJ, et al., 2018, Automated
               HepaRG cells in GelMa and its application to bioprinting of   3D bioassembly of micro-tissues for biofabrication of hybrid
               a multicellular hepatic model. Biomaterials, 269: 120611.  tissue engineered constructs. Biofabrication, 10(2): 024103.
               https://doi.org/10.1016/j.biomaterials.2020.120611  https://doi.org/10.1088/1758-5090/aa9ef1
            39.  Janani G, Priya S, Dey S,  et al., 2022, Mimicking native   50.  Halbleib JM, Nelson WJ, 2006, Cadherins in development:
               liver lobule microarchitecture in vitro with parenchymal   Cell adhesion, sorting, and tissue morphogenesis.  Genes
               and non-parenchymal cells using 3D-bioprinting for drug   Dev, 20(23): 3199–3214.
               toxicity and drug screening applications. ACS Appl Mater   https://doi.org/10.1101/gad.1486806
               Interfaces, 14(8): 10167–10186.
                                                               51.  Turksen K, ed., 2018, Cell biology and translational medicine,
               https://doi.org/10.1021/acsami.2c00312             Volume 3: Stem cells, bio-materials and tissue engineering,
            40.  Jian H, Li X, Dong Q, et al., 2023, In vitro construction of liver   Springer International Publishing, Cham, 1107.
               organoids with biomimetic lobule structure by a multicellular   https://doi.org/10.1007/978-3-030-04185-4
               3D-Bioprinting strategy. Cell Prolif, 56(5): e13465.
                                                               52.  Zhang Q, Ma L, Ji X, et al., 2022, High-strength hydroxyapatite
               https://doi.org/10.1111/cpr.13465                  scaffolds with minimal surface macrostructures for load-
            41.  Du L, Qin C, Zhang H, et al., 2023, Multicellular bioprinting   bearing bone regeneration. Adv Funct Mater, 32(33): 2204182.
               of biomimetic inks for Tendon-to-Bone regeneration. Adv   https://doi.org/10/gqpwqm
               Sci, 2301309.
                                                               53.  Forgacs  G,  2018,  In  3D  Bioprinting  in  regenerative
               http://doi.org/10.1002/advs.202301309              engineering: Applications of extrusion bioprinting, CRC
            42.  Zhu W, Ma X, Gou M, et al., 2016, 3D printing of functional   Press, Boca Raton: Taylor & Francis, 51–75.
               biomaterials for tissue engineering.  Curr Opin Biotechnol,   https://doi.org/10.1201/b21916-3
               40: 103–112.
                                                               54.  dos Santos BC, Noritomi PY, da Silva JVL,  et al., 2022,
               https://doi.org/10.1016/j.copbio.2016.03.014       Biological multiscale computational modeling: A promising
                                                                  tool for 3D-Bioprinting and tissue engineering. Bioprinting,
            43.  Murata D, Arai K, Nakayama K, 2020, Scaffold-free bio-
               3D printing using spheroids as “bio-inks” for tissue (re-)  28: e00234.
               construction and drug response tests. Adv Healthc Mater,   https://doi.org/10.1016/j.bprint.2022.e00234
               9(15): e1901831.                                55.  Sung K, Patel NR, Ashammakhi N, et al., 2021, 3-Dimensional
               https://doi.org/10.1002/adhm.201901831             bioprinting of cardiovascular tissues. JACC, 6(5): 467–482.
            44.  Tavares-Negrete JA, Babayigit C, Najafikoshnoo S, et al., n.d.,   https://doi.org/10.1016/j.jacbts.2020.12.006
               A novel 3D-bioprinting technology of orderly extruded multi-  56.  Wang Y, Wang J, Ji Z, et al., 2022, Application of bioprinting
               materials via photopolymerization. Adv Mater Technol, 8(12):   in ophthalmology. Int J Bioprint, 8(2): 552.
               2201926.
                                                                  https://doi.org/10.18063/ijb.v8i2.552
               https://doi.org/10.1002/admt.202201926
                                                               57.  Murata D, Fujimoto R, Nakayama K, 2020, Osteochondral
            45.  Kiratitanaporn W, Guan J, Berry DB,  et al., 2023, Multi-  regeneration using  adipose tissue-derived  mesenchymal
               modal vat photopolymerization for microscale modulation   stem cells. IJMS, 21(10): 3589.
               of scaffold stiffness assisted via machine learning. SSRN
                                                                  https://doi.org/10.3390/ijms21103589
               https://doi.org/10.2139/ssrn.4450557
                                                               58.  Aguilar IN, Smith LJ, Olivos DJ, et al., 2019, Scaffold-free
            46.  Vijayavenkataraman S, Yan W-C, Lu WF,  et al., 2018,   bioprinting of mesenchymal stem cells with the regenova
               3D-Bioprinting  of  tissues  and  organs  for  regenerative   printer: Optimization of printing parameters.  Bioprinting,
               medicine. Adv Drug Deliv Rev, 132: 296–332.        15: e00048.
               https://doi.org/10.1016/j.addr.2018.07.004         https://doi.org/10.1016/j.bprint.2019.e00048
            47.  Burks HE, Phamduy TB, Azimi MS,  et  al., 2016, Laser   59.  Ayan B, Heo DN, Zhang Z, et al., 2020, Aspiration-assisted
               direct-write onto live tissues: A novel model for studying   bioprinting for precise positioning of biologics.  Sci Adv,
               cancer cell migration. J Cel Physiol, 231(11): 2333–2338.  10(1): 13148.
               https://doi.org/10.1002/jcp.25363                  https://doi.org/10.1126/sciadv.aaw5111
            48.  Jahangirian H, Azizi S, Rafiee-Moghaddam R, et al., 2019,   60.  Moldovan NI, Hibino N, Nakayama K, 2017, Principles of
               Status of plant protein-based green scaffolds for regenerative   the Kenzan method for robotic cell spheroid-based three-
               medicine applications. Biomolecules, 9(10): 619.   dimensional bioprinting, Tissue Eng Part B Rev, 23(3): 237.
               https://doi.org/10.3390/biom9100619                https://doi.org/10.1089/ten.teb.2016.0322


            Volume 9 Issue 6 (2023)                        217                        https://doi.org/10.36922/ijb.0135
   220   221   222   223   224   225   226   227   228   229   230