Page 225 - IJB-9-6
P. 225
International Journal of Bioprinting Multi-Cellular tissues/organoids manufacturing strategies
38. Cuvellier M, Ezan F, Oliveira H, et al., 2021, 3D culture of 49. Mekhileri NV, Lim KS, Brown GCJ, et al., 2018, Automated
HepaRG cells in GelMa and its application to bioprinting of 3D bioassembly of micro-tissues for biofabrication of hybrid
a multicellular hepatic model. Biomaterials, 269: 120611. tissue engineered constructs. Biofabrication, 10(2): 024103.
https://doi.org/10.1016/j.biomaterials.2020.120611 https://doi.org/10.1088/1758-5090/aa9ef1
39. Janani G, Priya S, Dey S, et al., 2022, Mimicking native 50. Halbleib JM, Nelson WJ, 2006, Cadherins in development:
liver lobule microarchitecture in vitro with parenchymal Cell adhesion, sorting, and tissue morphogenesis. Genes
and non-parenchymal cells using 3D-bioprinting for drug Dev, 20(23): 3199–3214.
toxicity and drug screening applications. ACS Appl Mater https://doi.org/10.1101/gad.1486806
Interfaces, 14(8): 10167–10186.
51. Turksen K, ed., 2018, Cell biology and translational medicine,
https://doi.org/10.1021/acsami.2c00312 Volume 3: Stem cells, bio-materials and tissue engineering,
40. Jian H, Li X, Dong Q, et al., 2023, In vitro construction of liver Springer International Publishing, Cham, 1107.
organoids with biomimetic lobule structure by a multicellular https://doi.org/10.1007/978-3-030-04185-4
3D-Bioprinting strategy. Cell Prolif, 56(5): e13465.
52. Zhang Q, Ma L, Ji X, et al., 2022, High-strength hydroxyapatite
https://doi.org/10.1111/cpr.13465 scaffolds with minimal surface macrostructures for load-
41. Du L, Qin C, Zhang H, et al., 2023, Multicellular bioprinting bearing bone regeneration. Adv Funct Mater, 32(33): 2204182.
of biomimetic inks for Tendon-to-Bone regeneration. Adv https://doi.org/10/gqpwqm
Sci, 2301309.
53. Forgacs G, 2018, In 3D Bioprinting in regenerative
http://doi.org/10.1002/advs.202301309 engineering: Applications of extrusion bioprinting, CRC
42. Zhu W, Ma X, Gou M, et al., 2016, 3D printing of functional Press, Boca Raton: Taylor & Francis, 51–75.
biomaterials for tissue engineering. Curr Opin Biotechnol, https://doi.org/10.1201/b21916-3
40: 103–112.
54. dos Santos BC, Noritomi PY, da Silva JVL, et al., 2022,
https://doi.org/10.1016/j.copbio.2016.03.014 Biological multiscale computational modeling: A promising
tool for 3D-Bioprinting and tissue engineering. Bioprinting,
43. Murata D, Arai K, Nakayama K, 2020, Scaffold-free bio-
3D printing using spheroids as “bio-inks” for tissue (re-) 28: e00234.
construction and drug response tests. Adv Healthc Mater, https://doi.org/10.1016/j.bprint.2022.e00234
9(15): e1901831. 55. Sung K, Patel NR, Ashammakhi N, et al., 2021, 3-Dimensional
https://doi.org/10.1002/adhm.201901831 bioprinting of cardiovascular tissues. JACC, 6(5): 467–482.
44. Tavares-Negrete JA, Babayigit C, Najafikoshnoo S, et al., n.d., https://doi.org/10.1016/j.jacbts.2020.12.006
A novel 3D-bioprinting technology of orderly extruded multi- 56. Wang Y, Wang J, Ji Z, et al., 2022, Application of bioprinting
materials via photopolymerization. Adv Mater Technol, 8(12): in ophthalmology. Int J Bioprint, 8(2): 552.
2201926.
https://doi.org/10.18063/ijb.v8i2.552
https://doi.org/10.1002/admt.202201926
57. Murata D, Fujimoto R, Nakayama K, 2020, Osteochondral
45. Kiratitanaporn W, Guan J, Berry DB, et al., 2023, Multi- regeneration using adipose tissue-derived mesenchymal
modal vat photopolymerization for microscale modulation stem cells. IJMS, 21(10): 3589.
of scaffold stiffness assisted via machine learning. SSRN
https://doi.org/10.3390/ijms21103589
https://doi.org/10.2139/ssrn.4450557
58. Aguilar IN, Smith LJ, Olivos DJ, et al., 2019, Scaffold-free
46. Vijayavenkataraman S, Yan W-C, Lu WF, et al., 2018, bioprinting of mesenchymal stem cells with the regenova
3D-Bioprinting of tissues and organs for regenerative printer: Optimization of printing parameters. Bioprinting,
medicine. Adv Drug Deliv Rev, 132: 296–332. 15: e00048.
https://doi.org/10.1016/j.addr.2018.07.004 https://doi.org/10.1016/j.bprint.2019.e00048
47. Burks HE, Phamduy TB, Azimi MS, et al., 2016, Laser 59. Ayan B, Heo DN, Zhang Z, et al., 2020, Aspiration-assisted
direct-write onto live tissues: A novel model for studying bioprinting for precise positioning of biologics. Sci Adv,
cancer cell migration. J Cel Physiol, 231(11): 2333–2338. 10(1): 13148.
https://doi.org/10.1002/jcp.25363 https://doi.org/10.1126/sciadv.aaw5111
48. Jahangirian H, Azizi S, Rafiee-Moghaddam R, et al., 2019, 60. Moldovan NI, Hibino N, Nakayama K, 2017, Principles of
Status of plant protein-based green scaffolds for regenerative the Kenzan method for robotic cell spheroid-based three-
medicine applications. Biomolecules, 9(10): 619. dimensional bioprinting, Tissue Eng Part B Rev, 23(3): 237.
https://doi.org/10.3390/biom9100619 https://doi.org/10.1089/ten.teb.2016.0322
Volume 9 Issue 6 (2023) 217 https://doi.org/10.36922/ijb.0135

