Page 243 - IJB-9-6
P. 243

International Journal of Bioprinting                                     Bioprinting in diabetic foot disease




            61.  Guillemot F, Mironov V, Nakamura M, 2010, Bioprinting is   76.  Sinha S, Sparks HD, Labit E,  et al., 2022, Fibroblast
               coming of age: Report from the International Conference   inflammatory  priming  determines  regenerative
               on Bioprinting and Biofabrication in Bordeaux (3B’09).   versus fibrotic skin repair in reindeer.  Cell, 185(25):
               Biofabrication, 2(1): 010201.                      4717–4736.e25.
            62.  Mu R, Campos de Souza S, Liao Z, et al., 2022, Reprograming   77.  Pichu S, Vimalraj S, Sathiyamoorthy J,  et al., 2018,
               the immune niche for skin tissue regeneration - From   Association of hypoxia inducible factor-1 alpha exon 12
               cellular mechanisms to biomaterials applications. Adv Drug   mutation in diabetic patients with and without diabetic foot
               Deliv Rev, 185(2022): 114298.                      ulcer. Int J Biol Macromol, 119(2018): 833–837.
            63.  Las Heras K, Igartua M, Santos-Vizcaino E, et al., 2020, Chronic   78.  Dhamodharan U, Karan A, Sireesh D, et al., 2019, Tissue-
               wounds: Current status, available strategies and emerging   specific role of Nrf2 in the treatment of diabetic foot ulcers
               therapeutic solutions. J Control Release, 328(2020): 532–550.   during hyperbaric oxygen therapy.  Free Radic Biol Med,
                                                                  138(2019): 53–62.
            64.  Kolimi P, Narala S, Nyavanandi D, et al., 2022, Innovative
               treatment strategies to accelerate wound healing: Trajectory   79.  Theocharidis G, Thomas BE, Sarkar D, et al., 2022, Single
               and recent advancements. Cells, 11(15): 2439.      cell transcriptomic landscape of diabetic foot ulcers.  Nat
                                                                  Commun, 13(1): 181.
            65.  Martin P, Nunan R, 2015, Cellular and molecular
               mechanisms of repair in acute and chronic wound healing.   80.  Chen J, Qin S, Liu S,  et al., 2023, Targeting matrix
               Br J Dermatol, 173(2): 370–378.                    metalloproteases in diabetic wound healing. Front Immunol,
                                                                  14(2023): 1089001.
            66.  Felgueiras HP, 2023, Emerging antimicrobial and
               immunomodulatory  fiber-based scaffolding systems for   81.  Lobmann R, Ambrosch A, Schultz G, et al., 2002, Expression
               treating diabetic foot ulcers. Pharmaceutics, 15(1): 258.   of matrix-metalloproteinases and their inhibitors in the
                                                                  wounds of diabetic and non-diabetic patients. Diabetologia,
            67.  Eming SA, Martin P, Tomic-Canic M, 2014, Wound repair   45(7): 1011–1016.
               and regeneration: mechanisms, signaling, and translation.
               Sci Transl Med, 6(265): 265sr6.                 82.  Li N, Zhan A, Jiang Y,  et al., 2022, A novel matrix
                                                                  metalloproteinases-cleavable hydrogel loading deferoxamine
            68.  Gravel SP, Ben Khalifa Y, McGuirk S, et al., 2023, PGC-1s shape   accelerates diabetic wound healing.  Int J Biol Macromol,
               epidermal physiology by modulating keratinocyte proliferation   222(Pt A): 1551–1559.
               and terminal differentiation. iScience, 26(4): 106314.
                                                               83.  Yu FX, Lee PSY, Yang L, et al., 2022, The impact of sensory
            69.  Chouhan D, Dey N, Bhardwaj N,  et  al., 2019, Emerging   neuropathy and inflammation on epithelial wound healing
               and innovative approaches for wound healing and skin   in diabetic corneas. Prog Retin Eye Res, 89(2022): 101039.
               regeneration: Current status and advances.  Biomaterials,
               216(2019): 119267.                              84.  Srivastava P, Sondak T, Sivashanmugam K, et al., 2022, A
                                                                  review of immunomodulatory reprogramming by probiotics
            70.  Huang F, Lu X, Yang Y,  et  al., 2023, Microenvironment-  in combating chronic and acute diabetic foot ulcers (DFUs).
               based diabetic foot ulcer nanomedicine.  Adv Sci (Weinh),   Pharmaceutics, 14(11): 2436.
               10(2): e2203308.
                                                               85.  Xiao  Y,  Zhao  H,  Ma  X,  et al.,  2022,  Hydrogel  dressing
            71.  Theocharidis G, Baltzis D, Roustit M, et al., 2020, Integrated   containing basic fibroblast growth factor accelerating
               skin transcriptomics and serum multiplex assays reveal   chronic  wound  healing  in  aged  mouse  model.  Molecules,
               novel mechanisms of wound healing in diabetic foot ulcers.   27(19): 6361.
               Diabetes, 69(10): 2157–2169.
                                                               86.  Huang X, Liang P, Jiang B, et al., 2020, Hyperbaric oxygen
            72.  Aitcheson SM, Frentiu FD, Hurn SE, et al., 2021, Skin wound   potentiates diabetic wound healing by promoting fibroblast
               healing:  Normal macrophage function and macrophage   cell proliferation and endothelial cell angiogenesis. Life Sci,
               dysfunction in diabetic wounds. Molecules, 26(16): 4917.   259(2020): 118246.
            73.  Zhang J, Yang P, Liu D,  et al., 2021, Inhibiting hyper-O-  87.  Sharma R, Sharma SK, Mudgal SK,  et al., 2021, Efficacy
               GlcNAcylation of c-Myc accelerate diabetic wound healing   of hyperbaric oxygen therapy for diabetic foot ulcer, a
               by alleviating keratinocyte dysfunction.  Burns Trauma,   systematic  review  and meta-analysis  of controlled  clinical
               9(2021): tkab031.                                  trials. Sci Rep, 11(1): 2189.
            74.  Qi W, Yang C, Dai Z, et al., 2015, High levels of pigment   88.  Guo JL, Longaker MT, 2022, Bioprinted hydrogels for
               epithelium-derived factor in diabetes impair wound healing   fibrosis and wound healing: Treatment and modeling. Gels,
               through  suppression of Wnt signaling.  Diabetes,  64(4):   9(1): 19.
               1407–1419.
                                                               89.  Nessbach P, Schwarz S, Becke TD, et al., 2022, Angiogenic
            75.  Su D, Tsai HI, Xu Z, et al., 2019, Exosomal PD-L1 functions   potential of co-cultured human umbilical vein endothelial
               as an immunosuppressant to promote wound healing.    cells  and adipose stromal cells  in customizable  3D
               J Extracell Vesicles, 9(1): 1709262.               engineered collagen sheets. J Funct Biomater, 13(3): 107.


            Volume 9 Issue 6 (2023)                        235                        https://doi.org/10.36922/ijb.0142
   238   239   240   241   242   243   244   245   246   247   248