Page 350 - IJB-9-6
P. 350

International Journal of Bioprinting                                   3D printing and bioprinting in urology




               https://doi.org/10.1088/1758-5090/ab2b4f           3D silicone printing. Science, 379(6638): 1248–1252.
            70.  Ali M, Pr AK, Yoo JJ,  et al., 2019, A photo-crosslinkable   https://doi.org/10.1126/science.ade4441
               kidney ECM-derived bioink accelerates renal tissue   81.  Zhao  S,  Siqueira  G,  Drdova  S, et al.,  2020,  Additive
               formation. Adv Healthc Mater, 8(7): 1800992.
                                                                  manufacturing of silica aerogels. Nature, 584(7821): 387–392.
               https://doi.org/10.1002/adhm.201800992
                                                                  https://doi.org/10.1038/s41586-020-2594-0
            71.  Lin NYC, Homan KA, Robinson SS, et al., 2019, Renal   82.  Xu J, Zhang X, Liu Y, et al., 2020, Selective coaxial ink 3D
               reabsorption in 3D vascularized proximal tubule models.   printing for single-pass fabrication of smart elastomeric
               Proc Natl Acad Sci, 116(12): 5399–5404.
                                                                  foam with embedded stretchable sensor.  Addit  Manuf,
               https://doi.org/10.1073/pnas.1815208116            36(2020): 101487.
            72.  Jansen K, Castilho M, Aarts S, et al., 2019, Fabrication of kidney   https://doi.org/10.1016/j.addma.2020.101487
               proximal  tubule  grafts  using  biofunctionalized  electrospun   83.  Cooke MN, Fisher JP, Dean D, et al., 2003, Use of
               polymer scaffolds. Macromol Biosci, 19(2): 1800412.  stereolithography to manufacture critical-sized 3D
               https://doi.org/10.1002/mabi.201800412             biodegradable scaffolds for bone ingrowth. J Biomed Mater
                                                                  Res Part B-Appl Biomater, 64B(2): 65–69.
            73.  Imamura T, Shimamura M, Ogawa T, et al., 2018,
               Biofabricated structures reconstruct functional urinary   https://doi.org/10.1002/jbm.b.10485
               bladders in radiation-injured rat bladders. Tissue Eng Part   84.  Wang Z, Huang CZ, Wang J, et al., 2019, Development
               A, 24(21–22): 1574–1587.                           of a novel aqueous hydroxyapatite suspension for
               https://doi.org/10.1089/ten.tea.2017.0533          stereolithography applied to bone tissue engineering. Ceram
                                                                  Int, 45(3): 3902–3909.
            74.  Pi Q, Maharjan S, Yan X,  et  al., 2018, Digitally tunable
               microfluidic bioprinting of multilayered cannular tissues.   https://doi.org/10.1016/j.ceramint.2018.11.063
               Adv Mater, 30(43): 1706913.                     85.  Caprioli M, Roppolo I, Chiappone A, et al., 2021, 3D-printed
               https://doi.org/10.1002/adma.201706913             self-healing hydrogels via digital light processing.  Nat
                                                                  Commun, 12(1): 1–9.
            75.  Liang Q, Gao F, Zeng Z,  et  al., 2020, Coaxial scale-up
               printing of diameter-tunable biohybrid hydrogel microtubes   https://doi.org/10.1038/s41467-021-22802-z
               with  high  strength,  perfusability,  and  endothelialization.   86.  Chen Z, Yang M, Ji M, et al., 2021, Recyclable thermosetting
               Adv Funct Mater, 30(43): 2001485.                  polymers for digital light processing 3D printing. Mater Des,
               https://doi.org/10.1002/adfm.202001485             197(2021): 109189.
            76.  Xu Z, Fan C, Zhang Q, et al., 2021, A self-thickening and   https://doi.org/10.1016/j.matdes.2020.109189
               self-strengthening strategy for 3D printing high-strength   87.  Mazzoli A, Ferretti C, Gigante A, et al., 2015, Selective laser
               and antiswelling supramolecular polymer hydrogels as   sintering manufacturing of polycaprolactone bone scaffolds
               meniscus substitutes. Adv Funct Mater, 31(18): 2100462.  for applications in bone tissue engineering. Rapid Prototyp J,
               https://doi.org/10.1002/adfm.202100462             21(4): 386–392.
            77.  Gong J, Schuurmans CCL, Genderen AMv, et al., 2020,   https://doi.org/10.1108/rpj-04-2013-0040
               Complexation-induced  resolution  enhancement  of  88.  Liu C, Yan D, Tan J, et al., 2020, Development and
               3D-printed hydrogel constructs. Nat Commun, 11(1): 1267.  experimental validation of a hybrid selective laser melting
               https://doi.org/10.1038/s41467-020-14997-4         and CNC milling system. Addit Manuf, 36(2020): 101550.
            78.  Park S, Yuk H, Zhao R, et al., 2021, Adaptive and   https://doi.org/10.1016/j.addma.2020.101550
               multifunctional hydrogel hybrid probes for long-term   89.  Hu  Y,  Chen  H,  Liang  X, et al.,  2021,  Microstructure  and
               sensing  and  modulation  of neural  activity.  Nat Commun,   biomechanical properties in selective laser melting of porous
               12(1): 3435.                                       metal implants. 3D Print Addit Manuf, 0(0): 1–12.
               https://doi.org/10.1038/s41467-021-23802-9         https://doi.org/10.1089/3dp.2021.0150
            79.  Fan W, Shan C, Guo H, et al., 2022, Dual-gradient enabled   90.  Buote NJ, Porter I, Dakin GF, 2022, 3D printed cannulas for
               ultrafast biomimetic snapping of hydrogel materials.  Sci   use in laparoscopic surgery in feline patients: A cadaveric
               Adv, 5(4): eaav7174.                               study and case series. Vet Surg, n/a(n/a).
               https://doi.org/10.1126/sciadv.aav7174             https://doi.org/10.1111/vsu.13849
            80.  Duraivel S, Laurent D, Rajon DA, et al., 2023, A silicone-
               based support material eliminates interfacial instabilities in



            Volume 9 Issue 6 (2023)                        342                          https://doi.org/10.36922/ijb.0969
   345   346   347   348   349   350   351   352   353   354   355