Page 350 - IJB-9-6
P. 350
International Journal of Bioprinting 3D printing and bioprinting in urology
https://doi.org/10.1088/1758-5090/ab2b4f 3D silicone printing. Science, 379(6638): 1248–1252.
70. Ali M, Pr AK, Yoo JJ, et al., 2019, A photo-crosslinkable https://doi.org/10.1126/science.ade4441
kidney ECM-derived bioink accelerates renal tissue 81. Zhao S, Siqueira G, Drdova S, et al., 2020, Additive
formation. Adv Healthc Mater, 8(7): 1800992.
manufacturing of silica aerogels. Nature, 584(7821): 387–392.
https://doi.org/10.1002/adhm.201800992
https://doi.org/10.1038/s41586-020-2594-0
71. Lin NYC, Homan KA, Robinson SS, et al., 2019, Renal 82. Xu J, Zhang X, Liu Y, et al., 2020, Selective coaxial ink 3D
reabsorption in 3D vascularized proximal tubule models. printing for single-pass fabrication of smart elastomeric
Proc Natl Acad Sci, 116(12): 5399–5404.
foam with embedded stretchable sensor. Addit Manuf,
https://doi.org/10.1073/pnas.1815208116 36(2020): 101487.
72. Jansen K, Castilho M, Aarts S, et al., 2019, Fabrication of kidney https://doi.org/10.1016/j.addma.2020.101487
proximal tubule grafts using biofunctionalized electrospun 83. Cooke MN, Fisher JP, Dean D, et al., 2003, Use of
polymer scaffolds. Macromol Biosci, 19(2): 1800412. stereolithography to manufacture critical-sized 3D
https://doi.org/10.1002/mabi.201800412 biodegradable scaffolds for bone ingrowth. J Biomed Mater
Res Part B-Appl Biomater, 64B(2): 65–69.
73. Imamura T, Shimamura M, Ogawa T, et al., 2018,
Biofabricated structures reconstruct functional urinary https://doi.org/10.1002/jbm.b.10485
bladders in radiation-injured rat bladders. Tissue Eng Part 84. Wang Z, Huang CZ, Wang J, et al., 2019, Development
A, 24(21–22): 1574–1587. of a novel aqueous hydroxyapatite suspension for
https://doi.org/10.1089/ten.tea.2017.0533 stereolithography applied to bone tissue engineering. Ceram
Int, 45(3): 3902–3909.
74. Pi Q, Maharjan S, Yan X, et al., 2018, Digitally tunable
microfluidic bioprinting of multilayered cannular tissues. https://doi.org/10.1016/j.ceramint.2018.11.063
Adv Mater, 30(43): 1706913. 85. Caprioli M, Roppolo I, Chiappone A, et al., 2021, 3D-printed
https://doi.org/10.1002/adma.201706913 self-healing hydrogels via digital light processing. Nat
Commun, 12(1): 1–9.
75. Liang Q, Gao F, Zeng Z, et al., 2020, Coaxial scale-up
printing of diameter-tunable biohybrid hydrogel microtubes https://doi.org/10.1038/s41467-021-22802-z
with high strength, perfusability, and endothelialization. 86. Chen Z, Yang M, Ji M, et al., 2021, Recyclable thermosetting
Adv Funct Mater, 30(43): 2001485. polymers for digital light processing 3D printing. Mater Des,
https://doi.org/10.1002/adfm.202001485 197(2021): 109189.
76. Xu Z, Fan C, Zhang Q, et al., 2021, A self-thickening and https://doi.org/10.1016/j.matdes.2020.109189
self-strengthening strategy for 3D printing high-strength 87. Mazzoli A, Ferretti C, Gigante A, et al., 2015, Selective laser
and antiswelling supramolecular polymer hydrogels as sintering manufacturing of polycaprolactone bone scaffolds
meniscus substitutes. Adv Funct Mater, 31(18): 2100462. for applications in bone tissue engineering. Rapid Prototyp J,
https://doi.org/10.1002/adfm.202100462 21(4): 386–392.
77. Gong J, Schuurmans CCL, Genderen AMv, et al., 2020, https://doi.org/10.1108/rpj-04-2013-0040
Complexation-induced resolution enhancement of 88. Liu C, Yan D, Tan J, et al., 2020, Development and
3D-printed hydrogel constructs. Nat Commun, 11(1): 1267. experimental validation of a hybrid selective laser melting
https://doi.org/10.1038/s41467-020-14997-4 and CNC milling system. Addit Manuf, 36(2020): 101550.
78. Park S, Yuk H, Zhao R, et al., 2021, Adaptive and https://doi.org/10.1016/j.addma.2020.101550
multifunctional hydrogel hybrid probes for long-term 89. Hu Y, Chen H, Liang X, et al., 2021, Microstructure and
sensing and modulation of neural activity. Nat Commun, biomechanical properties in selective laser melting of porous
12(1): 3435. metal implants. 3D Print Addit Manuf, 0(0): 1–12.
https://doi.org/10.1038/s41467-021-23802-9 https://doi.org/10.1089/3dp.2021.0150
79. Fan W, Shan C, Guo H, et al., 2022, Dual-gradient enabled 90. Buote NJ, Porter I, Dakin GF, 2022, 3D printed cannulas for
ultrafast biomimetic snapping of hydrogel materials. Sci use in laparoscopic surgery in feline patients: A cadaveric
Adv, 5(4): eaav7174. study and case series. Vet Surg, n/a(n/a).
https://doi.org/10.1126/sciadv.aav7174 https://doi.org/10.1111/vsu.13849
80. Duraivel S, Laurent D, Rajon DA, et al., 2023, A silicone-
based support material eliminates interfacial instabilities in
Volume 9 Issue 6 (2023) 342 https://doi.org/10.36922/ijb.0969

