Page 347 - IJB-9-6
P. 347

International Journal of Bioprinting                                   3D printing and bioprinting in urology




               https://doi.org/10.1126/sciadv.abc5529             https://doi.org/10.1111/bju.14928
            5.   Bandyopadhyay A, Traxel KD, Bose S, 2021, Nature-inspired   17.  Agung NP, Nadhif MH, Irdam GA, et al., 2021, The role
               materials and structures using 3D Printing. Mater Sci Eng   of 3D-printed phantoms and devices for organ-specified
               R-Rep, 145(2021): 100609.                          appliances in urology. Int J Bioprint, 7(2): 333.
               https://doi.org/10.1016/j.mser.2021.100609         https://doi.org/10.18063/ijb.v7i2.333
            6.   Qu HW, Fu HY, Han ZY, et al., 2019, Biomaterials for bone   18.  Colaco M, Igel DA , Atala A, 2018, The potential of 3D
               tissue engineering scaffolds: A review.  RSC Adv, 9(45):   printing in urological research and patient care.  Nat Rev
               26252–26262.                                       Urol, 15(4): 213–221.
               https://doi.org/10.1039/C9RA05214C                 https://doi.org/10.1038/nrurol.2018.6
            7.   Sun W, Starly B, Daly AC, et al., 2020, The bioprinting   19.  Ngo  TD, Kashani A,  Imbalzano G,  et  al., 2018, Additive
               roadmap. Biofabrication, 12(2): 022002.            manufacturing (3D printing): A review of materials, methods,
                                                                  applications and challenges. Compos B Eng, 143(2018): 172–196.
               https://doi.org/10.1088/1758-5090/ab5158
                                                                  https://doi.org/10.1016/j.compositesb.2018.02.012
            8.   Qu HW, 2020, Additive manufacturing for bone tissue
               engineering scaffolds. Mater Today Commun, 24(101024): 1–16.  20.  Mondschein  RJ,  Kanitkar  A,  Williams  CB, et al.,
                                                                  2017, Polymer structure-property requirements for
               https://doi.org/10.1016/j.mtcomm.2020.101024
                                                                  stereolithographic 3D printing of soft tissue engineering
            9.   Qu H, Han Z, Chen Z, et al., 2021, Fractal design boosts   scaffolds. Biomaterials, 140(2017): 170–188.
               extrusion-based 3D printing of bone-mimicking radial-
               gradient scaffolds. Research, 2021(2021): 9892689.  https://doi.org/10.1016/j.biomaterials.2017.06.005
                                                               21.  Hwa LC, Rajoo S, Noor AM, et al., 2017, Recent advances in
               https://doi.org/10.34133/2021/9892689
                                                                  3D printing of porous ceramics: A review. Curr Opin Solid
            10.  Chatterjee K, Ghosh TK, 2020, 3D printing of textiles:   State Mater Sci, 21(6): 323–347.
               Potential roadmap to printing with fibers. Adv Mater, 32(4):
               1902086.                                           https://doi.org/10.1016/j.cossms.2017.08.002
                                                               22.  Kuang X, Wu JT, Chen KJ, et al., 2019, Grayscale digital
               https://doi.org/10.1002/adma.201902086
                                                                  light processing 3D printing for highly functionally graded
            11.  Lai J, Wang C, Wang M, 2021, 3D printing in biomedical   materials. Sci Adv, 5(5): eaav5790.
               engineering: Processes, materials, and applications.  Appl   https://doi.org/10.1126/sciadv.aav5790
               Phys Rev, 8(2): 021322.
                                                               23.  Shao HF, Ke XR, Liu A, et al., 2017, Bone regeneration in 3D
               https://doi.org/10.1063/5.0024177
                                                                  printing bioactive ceramic scaffolds with improved tissue/
            12.  Yang Y, Xu R, Wang C, et al., 2022, Recombinant human   material interface pore architecture in thin-wall bone defect.
               collagen-based bioinks for the 3D bioprinting of full-  Biofabrication, 9(2): 12.
               thickness human skin equivalent. Int J Bioprint, 8(4): 611.
                                                                  https://doi.org/10.1088/1758-5090/aa663c
               https://doi.org/10.18063/ijb.v8i4.611
                                                               24.  Butscher A, Bohner M, Hofmann S, et al., 2011, Structural
            13.  Wu Y, Li M, Su H, et al., 2023, Up-to-date progress in   and material approaches to bone tissue engineering in
               bioprinting of bone tissue. Int J Bioprint, 9(1): 628.  powder-based three-dimensional printing.  Acta Biomater,
               https://doi.org/10.18063/ijb.v9i1.628              7(3): 907–920.
            14.  Gao F, Xu ZY, Liang QF, et al., 2019, Osteochondral   https://doi.org/10.1016/j.actbio.2010.09.039
               regeneration with 3D-printed biodegradable high-strength   25.  Mousavi  S,  Howard D,  Zhang  F, et al.,  2020,  Direct  3D
               supramolecular polymer reinforced-gelatin hydrogel   printing of highly anisotropic, flexible, constriction-resistive
               scaffolds. Adv Sci, 6(15): 12.                     sensors for multidirectional proprioception in soft robots.
               https://doi.org/10.1002/advs.201900867             ACS Appl Mater Interfaces, 12(13): 15631–15643.
            15.  Lin ZF, Wu MM, He HM,  et al., 2019, 3D printing of   https://doi.org/10.1021/acsami.9b21816
               mechanically stable calcium-free alginate-based scaffolds   26.  Huang K, Dong S, Yang J, et al., 2019, Three-dimensional
               with tunable surface charge to enable cell adhesion and facile   printing of  a tunable  graphene-based  elastomer for strain
               biofunctionalization. Adv Funct Mater, 29(9): 1808439.  sensors with ultrahigh sensitivity. Carbon, 143(2019): 63–72.
               https://doi.org/10.1002/adfm.201808439             https://doi.org/10.1016/j.carbon.2018.11.008
            16.  Chen MY, Skewes J, Desselle M, et al., 2020, Current   27.  Jiang Z, Diggle B, Tan ML, et al., 2020, Extrusion 3D printing
               applications of three-dimensional printing in urology. BJU   of polymeric materials with advanced properties. Adv Sci,
               Int, 125(1): 17–27.                                7(17): 2001379.


            Volume 9 Issue 6 (2023)                        339                          https://doi.org/10.36922/ijb.0969
   342   343   344   345   346   347   348   349   350   351   352