Page 347 - IJB-9-6
P. 347
International Journal of Bioprinting 3D printing and bioprinting in urology
https://doi.org/10.1126/sciadv.abc5529 https://doi.org/10.1111/bju.14928
5. Bandyopadhyay A, Traxel KD, Bose S, 2021, Nature-inspired 17. Agung NP, Nadhif MH, Irdam GA, et al., 2021, The role
materials and structures using 3D Printing. Mater Sci Eng of 3D-printed phantoms and devices for organ-specified
R-Rep, 145(2021): 100609. appliances in urology. Int J Bioprint, 7(2): 333.
https://doi.org/10.1016/j.mser.2021.100609 https://doi.org/10.18063/ijb.v7i2.333
6. Qu HW, Fu HY, Han ZY, et al., 2019, Biomaterials for bone 18. Colaco M, Igel DA , Atala A, 2018, The potential of 3D
tissue engineering scaffolds: A review. RSC Adv, 9(45): printing in urological research and patient care. Nat Rev
26252–26262. Urol, 15(4): 213–221.
https://doi.org/10.1039/C9RA05214C https://doi.org/10.1038/nrurol.2018.6
7. Sun W, Starly B, Daly AC, et al., 2020, The bioprinting 19. Ngo TD, Kashani A, Imbalzano G, et al., 2018, Additive
roadmap. Biofabrication, 12(2): 022002. manufacturing (3D printing): A review of materials, methods,
applications and challenges. Compos B Eng, 143(2018): 172–196.
https://doi.org/10.1088/1758-5090/ab5158
https://doi.org/10.1016/j.compositesb.2018.02.012
8. Qu HW, 2020, Additive manufacturing for bone tissue
engineering scaffolds. Mater Today Commun, 24(101024): 1–16. 20. Mondschein RJ, Kanitkar A, Williams CB, et al.,
2017, Polymer structure-property requirements for
https://doi.org/10.1016/j.mtcomm.2020.101024
stereolithographic 3D printing of soft tissue engineering
9. Qu H, Han Z, Chen Z, et al., 2021, Fractal design boosts scaffolds. Biomaterials, 140(2017): 170–188.
extrusion-based 3D printing of bone-mimicking radial-
gradient scaffolds. Research, 2021(2021): 9892689. https://doi.org/10.1016/j.biomaterials.2017.06.005
21. Hwa LC, Rajoo S, Noor AM, et al., 2017, Recent advances in
https://doi.org/10.34133/2021/9892689
3D printing of porous ceramics: A review. Curr Opin Solid
10. Chatterjee K, Ghosh TK, 2020, 3D printing of textiles: State Mater Sci, 21(6): 323–347.
Potential roadmap to printing with fibers. Adv Mater, 32(4):
1902086. https://doi.org/10.1016/j.cossms.2017.08.002
22. Kuang X, Wu JT, Chen KJ, et al., 2019, Grayscale digital
https://doi.org/10.1002/adma.201902086
light processing 3D printing for highly functionally graded
11. Lai J, Wang C, Wang M, 2021, 3D printing in biomedical materials. Sci Adv, 5(5): eaav5790.
engineering: Processes, materials, and applications. Appl https://doi.org/10.1126/sciadv.aav5790
Phys Rev, 8(2): 021322.
23. Shao HF, Ke XR, Liu A, et al., 2017, Bone regeneration in 3D
https://doi.org/10.1063/5.0024177
printing bioactive ceramic scaffolds with improved tissue/
12. Yang Y, Xu R, Wang C, et al., 2022, Recombinant human material interface pore architecture in thin-wall bone defect.
collagen-based bioinks for the 3D bioprinting of full- Biofabrication, 9(2): 12.
thickness human skin equivalent. Int J Bioprint, 8(4): 611.
https://doi.org/10.1088/1758-5090/aa663c
https://doi.org/10.18063/ijb.v8i4.611
24. Butscher A, Bohner M, Hofmann S, et al., 2011, Structural
13. Wu Y, Li M, Su H, et al., 2023, Up-to-date progress in and material approaches to bone tissue engineering in
bioprinting of bone tissue. Int J Bioprint, 9(1): 628. powder-based three-dimensional printing. Acta Biomater,
https://doi.org/10.18063/ijb.v9i1.628 7(3): 907–920.
14. Gao F, Xu ZY, Liang QF, et al., 2019, Osteochondral https://doi.org/10.1016/j.actbio.2010.09.039
regeneration with 3D-printed biodegradable high-strength 25. Mousavi S, Howard D, Zhang F, et al., 2020, Direct 3D
supramolecular polymer reinforced-gelatin hydrogel printing of highly anisotropic, flexible, constriction-resistive
scaffolds. Adv Sci, 6(15): 12. sensors for multidirectional proprioception in soft robots.
https://doi.org/10.1002/advs.201900867 ACS Appl Mater Interfaces, 12(13): 15631–15643.
15. Lin ZF, Wu MM, He HM, et al., 2019, 3D printing of https://doi.org/10.1021/acsami.9b21816
mechanically stable calcium-free alginate-based scaffolds 26. Huang K, Dong S, Yang J, et al., 2019, Three-dimensional
with tunable surface charge to enable cell adhesion and facile printing of a tunable graphene-based elastomer for strain
biofunctionalization. Adv Funct Mater, 29(9): 1808439. sensors with ultrahigh sensitivity. Carbon, 143(2019): 63–72.
https://doi.org/10.1002/adfm.201808439 https://doi.org/10.1016/j.carbon.2018.11.008
16. Chen MY, Skewes J, Desselle M, et al., 2020, Current 27. Jiang Z, Diggle B, Tan ML, et al., 2020, Extrusion 3D printing
applications of three-dimensional printing in urology. BJU of polymeric materials with advanced properties. Adv Sci,
Int, 125(1): 17–27. 7(17): 2001379.
Volume 9 Issue 6 (2023) 339 https://doi.org/10.36922/ijb.0969

