Page 348 - IJB-9-6
P. 348
International Journal of Bioprinting 3D printing and bioprinting in urology
https://doi.org/10.1002/advs.202001379 https://doi.org/10.1089/ten.tec.2008.0288
28. Nan B, Galindo-Rosales FJ, Ferreira JMF, 2020, 3D printing 39. Han CJ, Yan CZ, Wen SF, et al., 2017, Effects of the unit
vertically: Direct ink writing free-standing pillar arrays. cell topology on the compression properties of porous Co-
Mater Today, 35(2020): 16–24. Cr scaffolds fabricated via selective laser melting. Rapid
Prototyp J, 23(1): 16–27.
https://doi.org/10.1016/j.mattod.2020.01.003
https://doi.org/10.1108/rpj-08-2015-0114
29. Lewis JA, 2006, Direct ink writing of 3D functional materials.
Adv Funct Mater, 16(17): 2193–2204. 40. Xiong Y-Z, Gao R-N, Zhang H, et al., 2020, Rationally
designed functionally graded porous Ti6Al4V scaffolds with
https://doi.org/10.1002/adfm.200600434
high strength and toughness built via selective laser melting
30. Ravichandran D, Xu W, Kakarla M, et al., 2021, Multiphase for load-bearing orthopedic applications. J Mech Behav
direct ink writing (MDIW) for multilayered polymer/ Biomed Mater, 104(2020): 103673.
nanoparticle composites. Addit Manuf, 47(2021): 102322.
https://doi.org/10.1016/j.jmbbm.2020.103673
https://doi.org/10.1016/j.addma.2021.102322
41. Liang HX, Yang YW, Xie DQ, et al., 2019, Trabecular-like
31. Nommeots-Nomm A, Lee PD, Jones JR, 2018, Direct ink Ti-6Al-4V scaffolds for orthopedic: Fabrication by selective
writing of highly bioactive glasses. J Eur Ceram Soc, 38(3): laser melting and in vitro biocompatibility. J Mater Sci
837–844. Technol, 35(7): 1284–1297.
https://doi.org/10.1016/j.jeurceramsoc.2017.08.006 https://doi.org/10.1016/j.jmst.2019.01.012
32. He YF, Zhang F, Saleh E, et al., 2017, A tripropylene glycol 42. Kinstlinger IS, Saxton SH, Calderon GA, et al., 2020,
diacrylate-based polymeric support ink for material jetting. Generation of model tissues with dendritic vascular networks
Addit Manuf, 16(2017): 153–161. via sacrificial laser-sintered carbohydrate templates. Nat
https://doi.org/10.1016/j.addma.2017.06.001 Biomed Eng, 4(9): 916–932.
33. Brunello G, Sivolella S, Meneghello R, et al., 2016, Powder- https://doi.org/10.1038/s41551-020-0566-1
based 3D printing for bone tissue engineering. Biotechnol 43. Mao M, Qu X, Zhang Y, et al., 2023, Leaf-venation-directed
Adv, 34(5): 740–753.
cellular alignment for macroscale cardiac constructs with
https://doi.org/10.1016/j.biotechadv.2016.03.009 tissue-like functionalities. Nat Commun, 14(1): 2077.
34. Miyanaji H, Zhang S , Yang L, 2018, A new physics-based https://doi.org/10.1038/s41467-023-37716-1
model for equilibrium saturation determination in binder 44. Brassard JA, Nikolaev M, Hübscher T, et al., 2021,
jetting additive manufacturing process. Int J Mach Tools Recapitulating macro-scale tissue self-organization through
Manuf, 124(2018): 1–11.
organoid bioprinting. Nat Mater, 20(1): 22–29.
https://doi.org/10.1016/j.ijmachtools.2017.09.001
https://doi.org/10.1038/s41563-020-00803-5
35. Zhou Z, Lennon A, Buchanan F, et al., 2020, Binder jetting
additive manufacturing of hydroxyapatite powders: Effects 45. Koons GL, Diba M, Mikos AG, 2020, Materials design for
of adhesives on geometrical accuracy and green compressive bone-tissue engineering. Nat Rev Mater, 5(8): 584–603.
strength. Addit Manuf, 36(2020):101645. https://doi.org/10.1038/s41578-020-0204-2
https://doi.org/10.1016/j.addma.2020.101645 46. Liu H, Du Y, St-Pierre J-P, et al., 2020, Bioenergetic-active
36. Du YY, Liu HM, Yang Q, et al., 2017, Selective laser materials enhance tissue regeneration by modulating
sintering scaffold with hierarchical architecture and cellular metabolic state. Sci Adv, 6(13): eaay7608.
gradient composition for osteochondral repair in rabbits. https://doi.org/10.1126/sciadv.aay7608
Biomaterials, 137(2017): 37–48.
47. McDermott Anna M, Herberg S, Mason Devon E, et al.,
https://doi.org/10.1016/j.biomaterials.2017.05.021
2019, Recapitulating bone development through engineered
37. Wu H, Wang O, Tian Y, et al., 2020, Selective laser sintering- mesenchymal condensations and mechanical cues for
based 4D printing of magnetism-responsive grippers. ACS tissue regeneration. Sci Transl Med, 11(495): eaav7756.
Appl Mater Interfaces, 13(11): 12679–12688.
https://doi.org/10.1126/scitranslmed.aav7756
https://doi.org/10.1021/acsami.0c17429
48. Saba P, Melnyk R, Holler T, et al., 2021, Comparison
38. Warnke PH, Douglas T, Wollny P, et al., 2009, Rapid of multi-parametric MRI of the prostate to 3D prostate
prototyping: Porous titanium alloy scaffolds produced by computer aided designs and 3D-printed prostate models for
selective laser melting for bone tissue engineering. Tissue pre-operative planning of radical prostatectomies: A pilot
Eng Part C-Methods, 15(2): 115–124. study. Urology, 158(2021): 150–155.
Volume 9 Issue 6 (2023) 340 https://doi.org/10.36922/ijb.0969

