Page 348 - IJB-9-6
P. 348

International Journal of Bioprinting                                   3D printing and bioprinting in urology




               https://doi.org/10.1002/advs.202001379             https://doi.org/10.1089/ten.tec.2008.0288
            28.  Nan B, Galindo-Rosales FJ, Ferreira JMF, 2020, 3D printing   39.  Han CJ, Yan CZ, Wen SF, et al., 2017, Effects of the unit
               vertically: Direct ink writing free-standing pillar arrays.   cell topology on the compression properties of porous Co-
               Mater Today, 35(2020): 16–24.                      Cr scaffolds fabricated via selective laser melting.  Rapid
                                                                  Prototyp J, 23(1): 16–27.
               https://doi.org/10.1016/j.mattod.2020.01.003
                                                                  https://doi.org/10.1108/rpj-08-2015-0114
            29.  Lewis JA, 2006, Direct ink writing of 3D functional materials.
               Adv Funct Mater, 16(17): 2193–2204.             40.  Xiong Y-Z, Gao R-N, Zhang H, et al., 2020, Rationally
                                                                  designed functionally graded porous Ti6Al4V scaffolds with
               https://doi.org/10.1002/adfm.200600434
                                                                  high strength and toughness built via selective laser melting
            30.  Ravichandran D, Xu W, Kakarla M, et al., 2021, Multiphase   for load-bearing orthopedic applications.  J Mech Behav
               direct ink writing (MDIW) for multilayered polymer/  Biomed Mater, 104(2020): 103673.
               nanoparticle composites. Addit Manuf, 47(2021): 102322.
                                                                  https://doi.org/10.1016/j.jmbbm.2020.103673
               https://doi.org/10.1016/j.addma.2021.102322
                                                               41.  Liang HX, Yang YW, Xie DQ, et al., 2019, Trabecular-like
            31.  Nommeots-Nomm A, Lee PD, Jones JR, 2018, Direct ink   Ti-6Al-4V scaffolds for orthopedic: Fabrication by selective
               writing of highly bioactive glasses. J Eur Ceram Soc, 38(3):   laser melting and in vitro biocompatibility.  J Mater Sci
               837–844.                                           Technol, 35(7): 1284–1297.
               https://doi.org/10.1016/j.jeurceramsoc.2017.08.006  https://doi.org/10.1016/j.jmst.2019.01.012
            32.  He YF, Zhang F, Saleh E, et al., 2017, A tripropylene glycol   42.  Kinstlinger IS, Saxton SH, Calderon GA, et al., 2020,
               diacrylate-based polymeric support ink for material jetting.   Generation of model tissues with dendritic vascular networks
               Addit Manuf, 16(2017): 153–161.                    via sacrificial laser-sintered carbohydrate templates.  Nat
               https://doi.org/10.1016/j.addma.2017.06.001        Biomed Eng, 4(9): 916–932.
            33.  Brunello G, Sivolella S, Meneghello R, et al., 2016, Powder-  https://doi.org/10.1038/s41551-020-0566-1
               based 3D printing for bone tissue engineering. Biotechnol   43.  Mao M, Qu X, Zhang Y, et al., 2023, Leaf-venation-directed
               Adv, 34(5): 740–753.
                                                                  cellular alignment for macroscale cardiac constructs with
               https://doi.org/10.1016/j.biotechadv.2016.03.009   tissue-like functionalities. Nat Commun, 14(1): 2077.
            34.  Miyanaji H, Zhang S , Yang L, 2018, A new physics-based   https://doi.org/10.1038/s41467-023-37716-1
               model for equilibrium saturation determination in binder   44.  Brassard JA, Nikolaev M, Hübscher T, et al., 2021,
               jetting additive manufacturing process.  Int J Mach Tools   Recapitulating macro-scale tissue self-organization through
               Manuf, 124(2018): 1–11.
                                                                  organoid bioprinting. Nat Mater, 20(1): 22–29.
               https://doi.org/10.1016/j.ijmachtools.2017.09.001
                                                                  https://doi.org/10.1038/s41563-020-00803-5
            35.  Zhou Z, Lennon A, Buchanan F, et al., 2020, Binder jetting
               additive manufacturing of hydroxyapatite powders: Effects   45.  Koons GL, Diba M, Mikos AG, 2020, Materials design for
               of adhesives on geometrical accuracy and green compressive   bone-tissue engineering. Nat Rev Mater, 5(8): 584–603.
               strength. Addit Manuf, 36(2020):101645.            https://doi.org/10.1038/s41578-020-0204-2
               https://doi.org/10.1016/j.addma.2020.101645     46.  Liu H, Du Y, St-Pierre J-P, et al., 2020, Bioenergetic-active
            36.  Du YY, Liu HM, Yang Q, et  al., 2017, Selective laser   materials enhance tissue regeneration by modulating
               sintering scaffold with hierarchical architecture and   cellular metabolic state. Sci Adv, 6(13): eaay7608.
               gradient composition for osteochondral repair in rabbits.   https://doi.org/10.1126/sciadv.aay7608
               Biomaterials, 137(2017): 37–48.
                                                               47.  McDermott Anna M, Herberg S, Mason Devon E, et al.,
               https://doi.org/10.1016/j.biomaterials.2017.05.021
                                                                  2019, Recapitulating bone development through engineered
            37.  Wu H, Wang O, Tian Y, et al., 2020, Selective laser sintering-  mesenchymal condensations and mechanical cues for
               based 4D printing of magnetism-responsive grippers. ACS   tissue regeneration. Sci Transl Med, 11(495): eaav7756.
               Appl Mater Interfaces, 13(11): 12679–12688.
                                                                  https://doi.org/10.1126/scitranslmed.aav7756
               https://doi.org/10.1021/acsami.0c17429
                                                               48.  Saba P, Melnyk R, Holler T, et al., 2021, Comparison
            38.  Warnke PH, Douglas T, Wollny P, et al., 2009, Rapid   of multi-parametric MRI of the prostate to 3D prostate
               prototyping: Porous titanium alloy scaffolds produced by   computer aided designs and 3D-printed prostate models for
               selective laser melting for bone tissue engineering.  Tissue   pre-operative  planning  of  radical  prostatectomies:  A  pilot
               Eng Part C-Methods, 15(2): 115–124.                study. Urology, 158(2021): 150–155.


            Volume 9 Issue 6 (2023)                        340                          https://doi.org/10.36922/ijb.0969
   343   344   345   346   347   348   349   350   351   352   353